Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Connecting the geometric and electronic structures of the nitrogenase iron–molybdenum cofactor through site-selective 57Fe labelling

Subjects

Abstract

Understanding the chemical bonding in the catalytic cofactor of the Mo nitrogenase (FeMo-co) is foundational for building a mechanistic picture of biological nitrogen fixation. A persistent obstacle towards this goal has been that the 57Fe-based spectroscopic data—although rich with information—combines responses from all seven Fe sites, and it has therefore not been possible to map individual spectroscopic responses to specific sites in the three-dimensional structure. Here we have addressed this challenge by incorporating 57Fe into a single site of FeMo-co. Spectroscopic analysis of the resting state informed on the local electronic structure of the terminal Fe1 site, including its oxidation state and spin orientation, and, in turn, on the spin-coupling scheme for the entire cluster. The oxidized resting state and the first intermediate in nitrogen fixation were also characterized, and comparisons with the resting state provided molecular-level insights into the redox chemistry of FeMo-co.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Employing site-selective isotopic labelling to understand the mechanism of biological nitrogen fixation.
Fig. 2: Postbiosynthetic incorporation of 57Fe into FeMo-co.
Fig. 3: Preparation and characterization of site-selectively labelled holo-NifDK samples.
Fig. 4: Characterization of the NifDK–M(57Fe1) sample.
Fig. 5: Redox changes at the Fe1 site of FeMo-co as revealed through studies of NifDK–M(57Fe1).

Similar content being viewed by others

Data availability

Data supporting the findings of this work are available within the article and its Supplementary Information. Data supporting the current study are also available from the corresponding author upon request. PDB 3U7Q was used in the preparation of Fig. 1.

References

  1. Raymond, J., Siefert, J. L., Staples, C. R. & Blankenship, R. E. The natural history of nitrogen fixation. Mol. Biol. Evol. 21, 541–554 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Canfield, D. E., Glazer, A. N. & Falkowski, P. G. The evolution and future of Earth’s nitrogen cycle. Science 330, 192–196 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Hoffman, B. M., Lukoyanov, D., Yang, Z.-Y., Dean, D. R. & Seefeldt, L. C. Mechanism of nitrogen fixation by nitrogenase: the next stage. Chem. Rev. 114, 4041–4062 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Winter, H. C. & Burris, R. H. Nitrogenase. Annu. Rev. Biochem. 45, 409–426 (1976).

    Article  CAS  PubMed  Google Scholar 

  5. Burgess, B. K. & Lowe, D. J. Mechanism of molybdenum nitrogenase. Chem. Rev. 96, 2983–3012 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Van Stappen, C. et al. The spectroscopy of nitrogenases. Chem. Rev. 120, 5005–5081 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Einsle, O. & Rees, D. C. Structural enzymology of nitrogenase enzymes. Chem. Rev. 120, 4969–5004 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Seefeldt, L. C. et al. Reduction of substrates by nitrogenases. Chem. Rev. 120, 5082–5106 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Spatzal, T. et al. Evidence for interstitial carbon in nitrogenase FeMo cofactor. Science 334, 940 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lovell, T., Li, J., Liu, T., Case, D. A. & Noodleman, L. FeMo cofactor of nitrogenase: a density functional study of states MN, MOX, MR, and MI. J. Am. Chem. Soc. 123, 12392–12410 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Harris, T. V. & Szilagyi, R. K. Comparative assessment of the composition and charge state of nitrogenase FeMo-cofactor. Inorg. Chem. 50, 4811–4824 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Siegbahn, P. E. M. Model calculations suggest that the central carbon in the FeMo-cofactor of nitrogenase becomes protonated in the process of nitrogen fixation. J. Am. Chem. Soc. 138, 10485–10495 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Bjornsson, R., Neese, F. & DeBeer, S. Revisiting the Mössbauer isomer shifts of the FeMoco cluster of nitrogenase and the cofactor charge. Inorg. Chem. 56, 1470–1477 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. Benediktsson, B. & Bjornsson, R. QM/MM study of the nitrogenase MoFe protein resting state: broken-symmetry states, protonation states, and QM region convergence in the FeMoco active site. Inorg. Chem. 56, 13417–13429 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. Raugei, S., Seefeldt, L. C. & Hoffman, B. M. Critical computational analysis illuminates the reductive-elimination mechanism that activates nitrogenase for N2 reduction. Proc. Natl Acad. Sci. USA 115, E10521 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li, Z., Li, J., Dattani, N. S., Umrigar, C. J. & Chan, G. K.-L. The electronic complexity of the ground-state of the FeMo cofactor of nitrogenase as relevant to quantum simulations. J. Chem. Phys. 150, 024302 (2019).

    Article  PubMed  Google Scholar 

  17. Cramer, S. P., Hodgson, K. O., Gillum, W. O. & Mortenson, L. E. The molybdenum site of nitrogenase. Preliminary structural evidence from X-ray absorption spectroscopy. J. Am. Chem. Soc. 100, 3398–3407 (1978).

    Article  CAS  Google Scholar 

  18. Cramer, S. P. et al. The molybdenum site of nitrogenase. 2. A comparative study of molybdenum–iron proteins and the iron–molybdenum cofactor by X-ray absorption spectroscopy. J. Am. Chem. Soc. 100, 3814–3819 (1978).

    Article  CAS  Google Scholar 

  19. Conradson, S. D. et al. Structural insights from the molybdenum K-edge X-ray absorption near edge structure of the iron–molybdenum protein of nitrogenase and its iron–molybdenum cofactor by comparison with synthetic iron–molybdenum–sulfur clusters. J. Am. Chem. Soc. 107, 7935–7940 (1985).

    Article  CAS  Google Scholar 

  20. Venters, R. A. et al. ENDOR of the resting state of nitrogenase molybdenum–iron proteins from Azotobacter vinelandii, Klebsiella pneumoniae, and Clostridium pasteurianum. Proton, iron-57, molybdenum-95, and sulfur-33 studies. J. Am. Chem. Soc. 108, 3487–3498 (1986).

    Article  CAS  Google Scholar 

  21. Lukoyanov, D., Yang, Z.-Y., Dean, D. R., Seefeldt, L. C. & Hoffman, B. M. Is Mo involved in hydride binding by the four-electron reduced (E4) intermediate of the nitrogenase MoFe protein? J. Am. Chem. Soc. 132, 2526–2527 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bjornsson, R. et al. Identification of a spin-coupled Mo(III) in the nitrogenase iron–molybdenum cofactor. Chem. Sci. 5, 3096–3103 (2014).

    Article  CAS  Google Scholar 

  23. Van Stappen, C. et al. Spectroscopic description of the E1 state of Mo nitrogenase based on Mo and Fe X-ray absorption and Mössbauer studies. Inorg. Chem. 58, 12365–12376 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  24. True, A. E., Nelson, M. J., Venters, R. A., Orme-Johnson, W. H. & Hoffman, B. M. Iron-57 hyperfine coupling tensors of the FeMo cluster in Azotobacter vinelandii MoFe protein: determination by polycrystalline ENDOR spectroscopy. J. Am. Chem. Soc. 110, 1935–1943 (1988).

    Article  CAS  Google Scholar 

  25. Yoo, S. J., Angove, H. C., Papaefthymiou, V., Burgess, B. K. & Münck, E. Mössbauer study of the MoFe protein of nitrogenase from Azotobacter vinelandii using selective 57Fe enrichment of the M-centers. J. Am. Chem. Soc. 122, 4926–4936 (2000).

    Article  CAS  Google Scholar 

  26. Lukoyanov, D. A. et al. Electron redistribution within the nitrogenase active site FeMo-cofactor during reductive elimination of H2 to achieve N≡N triple-bond activation. J. Am. Chem. Soc. 142, 21679–21690 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Münck, E. et al. Nitrogenase. VIII. Mössbauer and EPR spectroscopy. The MoFe protein component from Azotobacter vinelandii OP. Biochim. Biophys. Acta Protein Struct. 400, 32–53 (1975).

    Article  Google Scholar 

  28. Spatzal, T. et al. Nitrogenase FeMoco investigated by spatially resolved anomalous dispersion refinement. Nat. Commun. 7, 10902 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Srisantitham, S., Badding, E. D. & Suess, D. L. M. Postbiosynthetic modification of a precursor to the nitrogenase iron–molybdenum cofactor. Proc. Natl Acad. Sci. USA 118, e2015361118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ribbe, M. W., Hu, Y., Hodgson, K. O. & Hedman, B. Biosynthesis of nitrogenase metalloclusters. Chem. Rev. 114, 4063–4080 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Burén, S., Jiménez-Vicente, E., Echavarri-Erasun, C. & Rubio, L. M. Biosynthesis of nitrogenase cofactors. Chem. Rev. 120, 4921–4968 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Shah, V. K. & Brill, W. J. Isolation of an iron–molybdenum cofactor from nitrogenase. Proc. Natl Acad. Sci. USA 74, 3249–3253 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rawlings, J. et al. Novel metal cluster in the iron–molybdenum cofactor of nitrogenase. Spectroscopic evidence. J. Biol. Chem. 253, 1001–1004 (1978).

    Article  CAS  PubMed  Google Scholar 

  34. Yang, S. S. et al. Iron–molybdenum cofactor from nitrogenase. Modified extraction methods as probes for composition. J. Biol. Chem. 257, 8042–8048 (1982).

    Article  CAS  PubMed  Google Scholar 

  35. Mouesca, J. M., Noodleman, L., Case, D. A. & Lamotte, B. Spin densities and spin coupling in iron–sulfur clusters: a new analysis of hyperfine coupling constants. Inorg. Chem. 34, 4347–4359 (1995).

    Article  CAS  Google Scholar 

  36. Pandelia, M.-E., Lanz, N. D., Booker, S. J. & Krebs, C. Mössbauer spectroscopy of Fe/S proteins. Biochim. Biophys. Acta Mol. Cell Res. 1853, 1395–1405 (2015).

    Article  CAS  Google Scholar 

  37. Papaefthymiou, V., Girerd, J. J., Moura, I., Moura, J. J. G. & Muenck, E. Moessbauer study of D. gigas ferredoxin II and spin-coupling model for Fe3S4 cluster with valence delocalization. J. Am. Chem. Soc. 109, 4703–4710 (1987).

    Article  CAS  Google Scholar 

  38. Noodleman, L. Exchange coupling and resonance delocalization in reduced iron–sulfur [Fe4S4]+ and iron–selenium [Fe4Se4]+ clusters. 1. Basic theory of spin-state energies and EPR and hyperfine properties. Inorg. Chem. 30, 246–256 (1991).

    Article  CAS  Google Scholar 

  39. Venkateswara Rao, P. & Holm, R. H. Synthetic analogues of the active sites of iron–sulfur proteins. Chem. Rev. 104, 527–560 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Solomon, E. I., Gorelsky, S. I. & Dey, A. Metal–thiolate bonds in bioinorganic chemistry. J. Comput. Chem. 27, 1415–1428 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Lukoyanov, D. et al. Testing if the interstitial atom, X, of the nitrogenase molybdenum–iron cofactor is N or C: ENDOR, ESEEM, and DFT studies of the S = 3/2 resting state in multiple environments. Inorg. Chem. 46, 11437–11449 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Lukoyanov, D. A. et al. 13C ENDOR characterization of the central carbon within the nitrogenase catalytic cofactor indicates that the CFe6 core is a stabilizing ‘heart of steel’. J. Am. Chem. Soc. 144, 18315–18328 (2022).

    Article  CAS  PubMed  Google Scholar 

  43. Pérez-González, A. et al. Exploring the role of the central carbide of the nitrogenase active-site FeMo-cofactor through targeted 13C labeling and ENDOR spectroscopy. J. Am. Chem. Soc. 143, 9183–9190 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Zimmermann, R. et al. Nitrogenase X: Mössbauer and EPR studies on reversibly oxidized MoFe protein from Azotobacter vinelandii OP. Nature of the iron centers. Biochim. Biophys. Acta Protein Struct. 537, 185–207 (1978).

    Article  CAS  Google Scholar 

  45. Johnson, M. K., Thomson, A. J., Robinson, A. E. & Smith, B. E. Characterization of the paramagnetic centres of the molybdenum–iron protein of nitrogenase from Klebsiella pneumoniae using low temperature magnetic circular dichroism spectroscopy. Biochim. Biophys. Acta Protein Struct. 671, 61–70 (1981).

    Article  CAS  Google Scholar 

  46. Lindahl, P. A., Papaefthymiou, V., Orme-Johnson, W. H. & Münck, E. Mössbauer studies of solid thionin-oxidized MoFe protein of nitrogenase. J. Biol. Chem. 263, 19412–19418 (1988).

    Article  CAS  PubMed  Google Scholar 

  47. Smith, B. E. & Lang, G. Mössbauer spectroscopy of the nitrogenase proteins from Klebsiella pneumoniae. Structural assignments and mechanistic conclusions. Biochem. J 137, 169–180 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Surerus, K. K. et al. Moessbauer and integer-spin EPR of the oxidized P-clusters of nitrogenase: POX is a non-Kramers system with a nearly degenerate ground doublet. J. Am. Chem. Soc. 114, 8579–8590 (1992).

    Article  CAS  Google Scholar 

  49. Spatzal, T., Perez, K. A., Einsle, O., Howard, J. B. & Rees, D. C. Ligand binding to the FeMo-cofactor: structures of CO-bound and reactivated nitrogenase. Science 345, 1620–1623 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Spatzal, T., Perez, K. A., Howard, J. B. & Rees, D. C. Catalysis-dependent selenium incorporation and migration in the nitrogenase active site iron–molybdenum cofactor. eLife 4, e11620 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kang, W., Lee, C. C., Jasniewski, A. J., Ribbe, M. W. & Hu, Y. Structural evidence for a dynamic metallocofactor during N2 reduction by Mo-nitrogenase. Science 368, 1381–1385 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lee, C. C. et al. Evidence of substrate binding and product release via belt-sulfur mobilization of the nitrogenase cofactor. Nat. Catal. 5, 443–454 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Van Stappen, C., Thorhallsson, A. T., Decamps, L., Bjornsson, R. & DeBeer, S. Resolving the structure of the E1 state of Mo nitrogenase through Mo and Fe K-edge EXAFS and QM/MM calculations. Chem. Sci. 10, 9807–9821 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Christiansen, J., Tittsworth, R. C., Hales, B. J. & Cramer, S. P. Fe and Mo EXAFS of Azotobacter vinelandii nitrogenase in partially oxidized and singly reduced forms. J. Am. Chem. Soc. 117, 10017–10024 (1995).

    Article  CAS  Google Scholar 

  55. Lukoyanov, D. A. et al. The one-electron reduced active-site FeFe-cofactor of Fe-nitrogenase contains a hydride bound to a formally oxidized metal-ion core. Inorg. Chem. 61, 5459–5464 (2022).

    Article  CAS  PubMed  Google Scholar 

  56. Cao, L., Caldararu, O. & Ryde, U. Protonation and reduction of the FeMo cluster in nitrogenase studied by quantum mechanics/molecular mechanics (QM/MM) calculations. J. Comput. Chem. 14, 6653–6678 (2018).

    CAS  Google Scholar 

  57. Lee, C.-C., Ribbe, M. W. & Hu, Y. in Metalloproteins: Methods and Protocols (ed. Hu, Y.) 111–124 (Springer, 2019).

  58. Burgess, B. K., Jacobs, D. B. & Stiefel, E. I. Large-scale purification of high activity Azotobacter vinelandII nitrogenase. Biochim. Biophys. Acta Enzymol. 614, 196–209 (1980).

    Article  CAS  Google Scholar 

  59. McLean, P. A., Papaefthymiou, V., Orme-Johnson, W. H. & Münck, E. Isotopic hybrids of nitrogenase. Mössbauer study of MoFe protein with selective 57Fe enrichment of the P-cluster. J. Biol. Chem. 262, 12900–12903 (1987).

    Article  CAS  PubMed  Google Scholar 

  60. Christiansen, J., Goodwin, P. J., Lanzilotta, W. N., Seefeldt, L. C. & Dean, D. R. Catalytic and biophysical properties of a nitrogenase apo-MoFe protein produced by a nifB-deletion mutant of Azotobacter vinelandii. Biochemistry 37, 12611–12623 (1998).

    Article  CAS  PubMed  Google Scholar 

  61. Harris, D. F., Yang, Z.-Y., Dean, D. R., Seefeldt, L. C. & Hoffman, B. M. Kinetic understanding of N2 reduction versus H2 evolution at the E4(4H) Janus state in the three nitrogenases. Biochemistry 57, 5706–5714 (2018).

    Article  CAS  PubMed  Google Scholar 

  62. Davoust, C. E., Doan, P. E. & Hoffman, B. M. Q-band pulsed electron spin-echo spectrometer and its application to ENDOR and ESEEM. J. Magn. Reson. A 119, 38–44 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the National Institutes of Health (GM141203 to D.L.M.S. and GM111097 to B.M.H.), the MIT Research Support Committee (to D.L.M.S.) and the National Science Foundation (MCB-1908587 to B.M.H.) for funding. We thank N. Thompson for helpful discussions as well as D. Dean and V. Cash for providing the Azotobacter vinelandii strains used in this work. Support for the ICP-MS instrument was provided by a core centre grant (P30-ES002109) from the National Institute of Environmental Health Sciences, NIH.

Author information

Authors and Affiliations

Authors

Contributions

E.D.B., S.S. and D.A.L. performed the experiments. All authors contributed to the design of the study, data analysis and paper writing.

Corresponding author

Correspondence to Daniel L. M. Suess.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Lou Noodleman and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–20, Tables 1–22, Discussion and References.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badding, E.D., Srisantitham, S., Lukoyanov, D.A. et al. Connecting the geometric and electronic structures of the nitrogenase iron–molybdenum cofactor through site-selective 57Fe labelling. Nat. Chem. 15, 658–665 (2023). https://doi.org/10.1038/s41557-023-01154-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-023-01154-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing