Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spatiotemporal functional assembly of split protein pairs through a light-activated SpyLigation

Abstract

Proteins provide essential functional regulation of many bioprocesses across all scales of life; however, new techniques to specifically modulate protein activity within living systems and in engineered biomaterials are needed to better interrogate fundamental cell signalling and guide advanced decisions of biological fate. Here we establish a generalizable strategy to rapidly and irreversibly activate protein function with full spatiotemporal control. Through the development of a genetically encoded and light-activated SpyLigation (LASL), bioactive proteins can be stably reassembled from non-functional split fragment pairs following brief exposure (typically minutes) to cytocompatible light. Employing readily accessible photolithographic processing techniques to specify when, where and how much photoligation occurs, we demonstrate precise protein activation of UnaG, NanoLuc and Cre recombinase using LASL in solution, biomaterials and living mammalian cells, as well as optical control over protein subcellular localization. Looking forward, we expect that these photoclick-based optogenetic approaches will find tremendous utility in probing and directing complex cellular fates in both time and three-dimensional space.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: LASL affords complete spatiotemporal control over protein activation within living systems.
Fig. 2: pSC provides user control of SpyLigation in solution.
Fig. 3: LASL enables site-specific patterned protein localization in 3D biomaterials and living cells.
Fig. 4: Assembly of UnaG and NanoLuc through LASL of split protein fragments in solution and biomaterials.
Fig. 5: Photoactivation of split UnaG with spatiotemporal precision in living cells through intracellular LASL.
Fig. 6: Spatially controlled photoactivation of primary cell genome editing via LASL.

Similar content being viewed by others

Data availability

All pertinent experimental and characterization data are available within this manuscript and its associated Supplementary Information. Plasmids generated during the current study are available from the corresponding author upon reasonable request. Source data are provided with this paper.

References

  1. Shekhawat, S. S. & Ghosh, I. Split-protein systems: beyond binary protein–protein interactions. Curr. Opin. Chem. Biol. 15, 789–797 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Spencer, D. M., Wandless, T. J., Schreiber, S. L. & Crabtree, G. R. Controlling signal transduction with synthetic ligands. Science 262, 1019–1024 (1993).

    Article  CAS  PubMed  Google Scholar 

  3. Farrar, M. A., Alberola-Ila, J. & Perlmutter, R. M. Activation of the Raf-1 kinase cascade by coumermycin-induced dimerization. Nature 383, 178–181 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Fegan, A., White, B., Carlson, J. C. T. & Wagner, C. R. Chemically controlled protein assembly: techniques and applications. Chem. Rev. 110, 3315–3336 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Levskaya, A., Weiner, O. D., Lim, W. A. & Voigt, C. A. Spatiotemporal control of cell signalling using a light-switchable protein interaction. Nature 461, 997–1001 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kennedy, M. J. et al. Rapid blue-light-mediated induction of protein interactions in living cells. Nat. Methods 7, 973–975 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kawano, F., Suzuki, H., Furuya, A. & Sato, M. Engineered pairs of distinct photoswitches for optogenetic control of cellular proteins. Nat. Commun. 6, 6256 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Spiltoir, J. I. & Tucker, C. L. Photodimerization systems for regulating protein–protein interactions with light. Curr. Opin. Struct. Biol. 57, 1–8 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zakeri, B. et al. Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin. Proc. Natl Acad. Sci. USA 109, E690–E697 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hartzell, E. J., Terr, J. & Chen, W. Engineering a blue light inducible SpyTag system (BLISS). J. Am. Chem. Soc. 143, 8572–8577 (2021).

    Article  CAS  PubMed  Google Scholar 

  11. Chin, J. W. Expanding and reprogramming the genetic code. Nature 550, 53–60 (2017).

    Article  CAS  PubMed  Google Scholar 

  12. Chen, P. R. et al. A facile system for encoding unnatural amino acids in mammalian cells. Angew. Chem. Int. Ed. 48, 4052–4055 (2009).

    Article  CAS  Google Scholar 

  13. Ruskowitz, E. R. & DeForest, C. A. Proteome-wide analysis of cellular response to ultraviolet light for biomaterial synthesis and modification. ACS Biomater. Sci. Eng. 5, 2111–2116 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Yanagisawa, T. et al. Multistep engineering of pyrrolysyl-tRNA synthetase to genetically encode Nɛ-(o-azidobenzyloxycarbonyl) lysine for site-specific protein modification. Chem. Biol. 15, 1187–1197 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Serfling, R. et al. Designer tRNAs for efficient incorporation of non-canonical amino acids by the pyrrolysine system in mammalian cells. Nucleic Acids Res. 46, 1–10 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Ruskowitz, E. R. & DeForest, C. A. Photoresponsive biomaterials for targeted drug delivery and 4D cell culture. Nat. Rev. Mater. 3, 17087 (2018).

    Article  CAS  Google Scholar 

  17. Wylie, R. G. et al. Spatially controlled simultaneous patterning of multiple growth factors in three-dimensional hydrogels. Nat. Mater. 10, 799–806 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Mosiewicz, K. A. et al. In situ cell manipulation through enzymatic hydrogel photopatterning. Nat. Mater. 12, 1071–1077 (2013).

    Article  Google Scholar 

  19. DeForest, C. A. & Tirrell, D. A. A photoreversible protein-patterning approach for guiding stem cell fate in three-dimensional gels. Nat. Mater. 14, 523–531 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Grim, J. C. et al. A reversible and repeatable thiol–ene bioconjugation for dynamic patterning of signaling proteins in hydrogels. ACS Cent. Sci. 4, 909–916 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shadish, J. A., Benuska, G. M. & DeForest, C. A. Bioactive site-specifically modified proteins for 4D patterning of gel biomaterials. Nat. Mater. 18, 1005–1014 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Broguiere, N. et al. Morphogenesis guided by 3D patterning of growth factors in biological matrices. Adv. Mater. 32, 1908299 (2020).

    Article  CAS  Google Scholar 

  23. Batalov, I., Stevens, K. R. & DeForest, C. A. Photopatterned biomolecule immobilization to guide three-dimensional cell fate in natural protein-based hydrogels. Proc. Natl Acad. Sci. USA 118, e2014194118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hoyt, E. A., Cal, P. M. S. D., Oliveira, B. L. & Bernardes, G. J. L. Contemporary approaches to site-selective protein modification. Nat. Rev. Chem. 3, 147–171 (2019).

    Article  CAS  Google Scholar 

  25. Shadish, J. A. & DeForest, C. A. Site-selective protein modification: from functionalized proteins to functional biomaterials. Matter 2, 50–77 (2020).

    Article  Google Scholar 

  26. Agard, N. J., Prescher, J. A. & Bertozzi, C. R. A strain-promoted [3 + 2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. J. Am. Chem. Soc. 126, 15046–15047 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. DeForest, C. A., Polizzotti, B. D. & Anseth, K. S. Sequential click reactions for synthesizing and patterning three-dimensional cell microenvironments. Nat. Mater. 8, 659–664 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Arakawa, C. K., Badeau, B. A., Zheng, Y. & DeForest, C. A. Multicellular vascularized engineered tissues through user-programmable biomaterial photodegradation. Adv. Mater. 29, 1703156 (2017).

    Article  Google Scholar 

  29. Badeau, B. A., Comerford, M. P., Arakawa, C. K., Shadish, J. A. & DeForest, C. A. Engineered modular biomaterial logic gates for environmentally triggered therapeutic delivery. Nat. Chem. 10, 251–258 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Guimaraes, C. P. et al. Site-specific C-terminal and internal loop labeling of proteins using sortase-mediated reactions. Nat. Protoc. 8, 1787–1799 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Shaner, N. C. et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat. Biotechnol. 22, 1567–1572 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Szymczak, A. L. et al. Correction of multi-gene deficiency in vivo using a single ‘self-cleaving’ 2A peptide-based retroviral vector. Nat. Biotechnol. 22, 589–594 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Sawano, A. & Miyawaki, A. Directed evolution of green fluorescent protein by a new versatile PCR strategy for site-directed and semi-random mutagenesis. Nucleic Acids Res. 28, E78 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Roberts, P. J. et al. Rho family GTPase modification and dependence on CAAX motif-signaled posttranslational modification. J. Biol. Chem. 283, 25150–25163 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kumagai, A. et al. A bilirubin-inducible fluorescent protein from eel muscle. Cell 153, 1602–1611 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Kwon, J. et al. Bright ligand-activatable fluorescent protein for high-quality multicolor live-cell super-resolution microscopy. Nat. Commun. 11, 273 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. To, T. L., Zhang, Q. & Shu, X. Structure-guided design of a reversible fluorogenic reporter of protein–protein interactions. Protein Sci. 25, 748–753 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li, L., Fierer, J. O., Rapoport, T. A. & Howarth, M. Structural analysis and optimization of the covalent association between SpyCatcher and a peptide Tag. J. Mol. Biol. 426, 309–317 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Gouzel, K., Josette, P., Agnes, U. & Daniel, L. A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proc. Natl Acad. Sci. USA 95, 5752–5756 (1998).

    Article  Google Scholar 

  40. Paulmurugan, R., Umezawa, Y. & Gambhir, S. S. Noninvasive imaging of protein–protein interactions in living subjects by using reporter protein complementation and reconstitution strategies. Proc. Natl Acad. Sci. USA 99, 15608–15613 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Paulmurugan, R. & Gambhir, S. S. Monitoring protein–protein interactions using split synthetic renilla luciferase protein-fragment-assisted complementation. Anal. Chem. 75, 1584–1589 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hall, M. P. et al. Engineered luciferase reporter from a deep sea shrimp utilizing a novel imidazopyrazinone substrate. ACS Chem. Biol. 7, 1848–1857 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dixon, A. S. et al. NanoLuc complementation reporter optimized for accurate measurement of protein interactions in Cells. ACS Chem. Biol. 11, 400–408 (2016).

    Article  CAS  PubMed  Google Scholar 

  44. Jullien, N., Sampieri, F., Enjalbert, A. & Herman, J. Regulation of Cre recombinase by ligand‐induced complementation of inactive fragments. Nucleic Acids Res. 31, e131 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Muzumdar, M. D., Tasic, B., Miyamichi, K., Li, L. & Luo, L. A global double-fluorescent Cre reporter mouse. Genesis 45, 593–605 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Keeble, A. H. et al. Approaching infinite affinity through engineering of peptide–protein interaction. Proc. Natl Acad. Sci. USA 116, 26523–26533 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Keeble, A. H. et al. DogCatcher allows loop-friendly protein–protein ligation. Cell Chem. Biol. 29, 339–350 (2021).

    Article  PubMed  Google Scholar 

  48. Wu, X.-L., Liu, Y., Liu, D., Sun, F. & Zhang, W.-B. An intrinsically disordered peptide–peptide stapler for highly efficient protein ligation both in vivo and in vitro. J. Am. Chem. Soc. 140, 17474–17483 (2018).

    Article  CAS  PubMed  Google Scholar 

  49. Fierer, J. O., Veggiani, G. & Howarth, M. SpyLigase peptide–peptide ligation polymerizes affibodies to enhance magnetic cancer cell capture. Proc. Natl Acad. Sci. USA 111, E1176–E1181 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Buldun, C. M., Jean, J. X., Bedford, M. R. & Howarth, M. SnoopLigase catalyzes peptide–peptide locking and enables solid-phase conjugate isolation. J. Am. Chem. Soc. 140, 3008–3018 (2018).

    Article  CAS  PubMed  Google Scholar 

  51. Lorand, L. & Graham, R. M. Transglutaminases: crosslinking enzymes with pleiotropic functions. Nat. Rev. Mol. Cell Biol. 4, 140–156 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Wong, S., Mosabbir, A. A. & Truong, K. An engineered split intein for photoactivated protein trans-splicing. PLoS ONE 10, e0135965 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Baek, M. et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 373, 871–876 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We recognize T. Rapp and R. Francis for synthetic advice, J. Shadish for helpful discussion on molecular cloning, R. Gharios for forward-looking conversations, R. Bretherton for providing the SpyTag peptide and transgenic dermal fibroblasts, J. Davis for gifting the HEK-293T cells (originally acquired from the American Type Culture Collection; CRL-3216) and S. Edgar (in memoriam) for assistance with mass spectrometry. This work was supported by a CAREER Award (DMR 1652141 to C.A.D.) and grants (DMR 1807398 and CBET 1803054 to C.A.D.) from the National Science Foundation, as well as a Maximizing Investigators’ Research Award (R35GM138036 to C.A.D.) from the National Institutes of Health. Student fellowship support was provided by the Institute for Stem Cell and Regenerative Medicine (to B.G.M.-R.) and Mary Gates Endowment for Students (to A.C.S., C.H.B. and S.K.) at the University of Washington. Part of this work was conducted with instrumentation provided by the Joint Center for Deployment and Research in Earth Abundant Materials. The Thorlabs multiphoton microscope was acquired with and operated under support from the Washington Research Foundation and the University of Washington College of Engineering, Institute for Stem Cell and Regenerative Medicine and Departments of Chemical Engineering, Bioengineering, Chemistry and Biology.

Author information

Authors and Affiliations

Authors

Contributions

E.R.R. and C.A.D. conceived of and designed the experiments. E.R.R., B.G.M.-R., A.C.S., C.H.B., S.K. and J.R.F. performed the experiments. E.R.R., B.G.M.-R., A.C.S., S.K., C.H.B. and C.A.D. analysed the data and prepared the figures. E.R.R., B.G.M.-R. and C.A.D. wrote the paper.

Corresponding author

Correspondence to Cole A. DeForest.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Cecile Echalier and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Photoactivation of split UnaG with spatiotemporal precision in living cells through intracellular LASL.

a-c, Mask-based photolithography spatiotemporally directs UnaG reassembly within HEK-293T cell culture. a, Fluorescent images of culture dish with inlays of exposure boundary magnified. b, Individual cell UnaG/mCh signal quantified radially outwards from the photomask’s center, normalized to the average UnaG/mCh ratio in unexposed cells. Dashed line indicates exposure edge. c, Violin scatter plots of normalized UnaG/mCh ratios in light-(un)exposed regions. Light treatments, λ = 365 nm, 20 mW cm−2, 20 min. Asterisks denote conditions with statistically significant differences in signal (p < 0.0001, two-tailed unpaired t-tests). Similar results were independently achieved in 3 experimental replicates. Scale bars, 1 mm (a).

Source data

Supplementary information

Supplementary Information

Supplementary Figs. 1–16, methods 1–28 and Tables 1 and 2.

Reporting Summary

Supplementary Data 1

Statistical data for Supplementary Figs. 1, 3, 4, 6, 9–11 and 14–16.

Source data

Source Data Fig. 2

Source data for Fig. 2a,d.

Source Data Fig. 3

Source data for Fig. 3d,e,h,i.

Source Data Fig. 4

Source data for Fig. 4c–e,k.

Source Data Fig. 5

Source data for Fig. 5c,e,f.

Source Data Extended Data Fig. 1

Source data for Extended Fig. 1b,c.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruskowitz, E.R., Munoz-Robles, B.G., Strange, A.C. et al. Spatiotemporal functional assembly of split protein pairs through a light-activated SpyLigation. Nat. Chem. 15, 694–704 (2023). https://doi.org/10.1038/s41557-023-01152-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-023-01152-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing