Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Aromatic hexazine [N6]4− anion featured in the complex structure of the high-pressure potassium nitrogen compound K9N56

Abstract

The recent high-pressure synthesis of pentazolates and the subsequent stabilization of the aromatic [N5] anion at atmospheric pressure have had an immense impact on nitrogen chemistry. Other aromatic nitrogen species have also been actively sought, including the hexaazabenzene N6 ring. Although a variety of configurations and geometries have been proposed based on ab initio calculations, one that stands out as a likely candidate is the aromatic hexazine anion [N6]4−. Here we present the synthesis of this species, realized in the high-pressure potassium nitrogen compound K9N56 formed at high pressures (46 and 61 GPa) and high temperature (estimated to be above 2,000 K) by direct reaction between nitrogen and KN3 in a laser-heated diamond anvil cell. The complex structure of K9N56—composed of 520 atoms per unit cell—was solved based on synchrotron single-crystal X-ray diffraction and corroborated by density functional theory calculations. The observed hexazine anion [N6]4− is planar and proposed to be aromatic.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimentally determined crystal structure of the K9N56 compound at 61 GPa by SC-XRDp.
Fig. 2: Visualization of the all-electron charge density of the [N6]4− ring in K9N56 from DFT-based calculations at 61 GPa.
Fig. 3: PXRD patterns of K9N56 and unit cell volume of K9N56 with pressure.

Similar content being viewed by others

Data availability

The details of the crystal structure investigations may be obtained from FIZ Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany (fax: +49-7247-808-666; e-mail: crysdata@fiz-karlsruhe.de) on quoting the deposition numbers CSD 2127463 (K9N56 at 61 GPa, obtained the Bayerisches Geoinstitut) and CSD 2166620 (K9N56 at 58 GPa, obtained at the ID18 beamline of the EBS-ESRF). A full dataset collected at 61 GPa on a sample containing the K9N56 compound, as well as reciprocal space unwarps, are available for download through the link https://figshare.com/s/587f623b762bdccb4308 (ref. 57). Datasets generated during and/or analysed during the current study, namely the raw SC-XRDp data of K9N56 at 58 GPa and the raw PXRD data collected during the decompression of K9N56, are available from the corresponding author on reasonable request. Source data are provided with this paper.

References

  1. von Schleyer, P. R. & Jiao, H. What is aromaticity? Pure Appl. Chem. 68, 209–218 (1996).

    Article  CAS  Google Scholar 

  2. Cook, M. J., Katritzky, A. R. & Linda, P. Aromaticity of heterocycles. In Advances in Heterocyclic Chemistry 255–356 (1974); https://doi.org/10.1016/S0065-2725(08)60910-1

  3. Krygowski, T. M. & Szatylowicz, H. Aromaticity: what does it mean? ChemTexts 1, 12 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kaneda, H., Onaka, T. & Sakon, I. Detection of PAH emission features from nearby elliptical galaxies with the Spitzer infrared spectrograph. Astrophys. J. 632, L83–L86 (2005).

    Article  CAS  Google Scholar 

  5. Cruikshank, D. P., Dalle Ore, C. M., Clark, R. N. & Pendleton, Y. J. Aromatic and aliphatic organic materials on Iapetus: analysis of Cassini VIMS data. Icarus 233, 306–315 (2014).

    Article  CAS  Google Scholar 

  6. Ehrenfreund, P., Rasmussen, S., Cleaves, J. & Chen, L. Experimentally tracing the key steps in the origin of life: the aromatic world. Astrobiology 6, 490–520 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Hudgins, D. M., Bauschlicher, C. W. Jr & Allamandola, L. J. Variations in the peak position of the 6.2-μm interstellar emission feature: a tracer of N in the interstellar polycyclic aromatic hydrocarbon population. Astrophys. J. 632, 316–332 (2005).

    Article  CAS  Google Scholar 

  8. Hückel, E. Quantentheoretische beiträge zum Problem der aromatischen und ungesättigten Verbindungen. III. Z. Phys. 76, 628–648 (1932).

    Article  Google Scholar 

  9. Ajami, D., Oeckler, O., Simon, A. & Herges, R. Synthesis of a Möbius aromatic hydrocarbon. Nature 426, 819–821 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Balaban, A. T., Oniciu, D. C. & Katritzky, A. R. Aromaticity as a cornerstone of heterocyclic chemistry. Chem. Rev. 104, 2777–2812 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Boldyrev, A. I. & Wang, L. All-metal aromaticity and antiaromaticity. Chem. Rev. 105, 3716–3757 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Laniel, D. et al. High-pressure Na3(N2)4, Ca3(N2)4, Sr3(N2)4 and Ba(N2)3 featuring nitrogen dimers with noninteger charges and anion-driven metallicity. Phys. Rev. Mater. 6, 023402 (2022).

    Article  CAS  Google Scholar 

  13. Aslandukov, A. et al. High-pressure yttrium nitride, Y5N14, featuring three distinct types of nitrogen dimers. J. Phys. Chem. C 125, 18077–18084 (2021).

    Article  CAS  Google Scholar 

  14. Laniel, D. et al. Synthesis of magnesium-nitrogen salts of polynitrogen anions. Nat. Commun. 10, 4515 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bykov, M. et al. Fe–N system at high pressure reveals a compound featuring polymeric nitrogen chains. Nat. Commun. 9, 2756 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bykov, M. et al. High-pressure synthesis of a nitrogen-rich inclusion compound ReN8x N2 with conjugated polymeric nitrogen chains. Angew. Chem. Int. Ed. 57, 9048–9053 (2018).

    Article  CAS  Google Scholar 

  17. Laniel, D. et al. High-pressure synthesis of the β-Zn3N2 nitride and the α-ZnN4 and β-ZnN4 polynitrogen compounds. Inorg. Chem. 60, 14594–14601 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Bykov, M. et al. High‐pressure synthesis of metal-inorganic frameworks Hf4N20N2, WN8N2 and Os5N283 N2 with polymeric nitrogen linkers. Angew. Chem. Int. Ed. 59, 10321–10326 (2020).

    Article  CAS  Google Scholar 

  19. Eremets, M. I., Gavriliuk, A. G., Trojan, I. A., Dzivenko, D. A. & Boehler, R. Single-bonded cubic form of nitrogen. Nat. Mater. 3, 558–563 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Laniel, D. et al. High-pressure polymeric nitrogen allotrope with the black phosphorus structure. Phys. Rev. Lett. 124, 216001 (2020).

    Article  CAS  PubMed  Google Scholar 

  21. Vij, A., Pavlovich, J. G., Wilson, W. W., Vij, V. & Christe, K. O. Experimental detection of the pentaazacyclopentadienide (pentazolate) anion, cyclo-N5. Angew. Chem. Int. Ed. 41, 3051–3054 (2002).

    Article  CAS  Google Scholar 

  22. Wozniak, D. R. & Piercey, D. G. Review of the current synthesis and properties of energetic pentazolate and derivatives thereof. Engineering 6, 981–991 (2020).

    Article  CAS  Google Scholar 

  23. Jiang, C. et al. Synthesis and characterization of the pentazolate anion cyclo-N5 in (N5)6(H3O)3(NH4)4Cl. Science 355, 347–376 (2017).

    Google Scholar 

  24. Xu, Y. et al. A series of energetic metal pentazolate hydrates. Nature 549, 78–81 (2017).

    Article  CAS  PubMed  Google Scholar 

  25. Vogler, A., Wright, R. E. & Kunkely, H. Photochemical reductive cis-elimination in cis-diazidobis(triphenylphosphane)platinum(II) evidence of the formation of bis(triphenylphosphane)platinum(0) and hexaazabenzene. Angew. Chem. Int. Ed. Engl. 19, 717–718 (1980).

    Article  Google Scholar 

  26. Williams, A. S., Steele, B. A. & Oleynik, I. I. Novel rubidium poly-nitrogen materials at high pressure. J. Chem. Phys. 147, 234701 (2017).

    Article  PubMed  Google Scholar 

  27. Duan, H. & Li, Q.-S. A series of novel aromatic compounds with a planar N6 ring. Chem. Phys. Lett. 432, 331–335 (2006).

    Article  CAS  Google Scholar 

  28. Glukhovtsev, M. N. & von Ragué Schleyer, P. Structures, bonding and energies of N6 isomers. Chem. Phys. Lett. 198, 547–554 (1992).

    Article  CAS  Google Scholar 

  29. Li, F. et al. Benzene-like N6 rings in a Be2N6 monolayer: a stable 2D semiconductor with high carrier mobility. J. Mater. Chem. C 5, 11515–11521 (2017).

    Article  CAS  Google Scholar 

  30. Duan, H., Gong, Z., Cheng, J., Zhu, W. & Chen, K. Induction of an aromatic six-membered nitrogen ring via cation-π interaction. J. Phys. Chem. A 110, 12236–12240 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Straka, M. N6 ring as a planar hexagonal ligand in novel M (η6-N6) species. Chem. Phys. Lett. 358, 531–536 (2002).

    Article  CAS  Google Scholar 

  32. Li, J., Liu, C.-W. & Lu, J.-X. Ab initio studies on the electronic structures of certain 10π-electron six-membered ring compounds. Chem. Phys. Lett. 195, 179–183 (1992).

    Google Scholar 

  33. Hou, P. et al. Structural phase transition and bonding properties of high-pressure polymeric CaN3. RSC Adv. 8, 4314–4320 (2018).

    Article  CAS  Google Scholar 

  34. Ha, T. & Nguyen, M. T. The identity of the six nitrogen atoms (N6) species. Chem. Phys. Lett. 195, 179–183 (1992).

    Article  CAS  Google Scholar 

  35. Duley, S. et al. Aromaticity and hydrogen storage capability of planar and rings. Chem. Phys. Lett. 506, 315–320 (2011).

    Article  CAS  Google Scholar 

  36. Zhang, J., Zeng, Z., Lin, H.-Q. & Li, Y.-L. Pressure-induced planar N6 rings in potassium azide. Sci. Rep. 4, 4358 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zhang, M., Yan, H., Wei, Q., Wang, H. & Wu, Z. Novel high-pressure phase with pseudo-benzene N6 molecule of LiN3. Europhys. Lett. 101, 26004 (2013).

    Article  Google Scholar 

  38. Liu, Z. et al. Formation mechanism of insensitive tellurium hexanitride with armchair-like cyclo-N6 anions. Commun. Chem. 3, 42 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liu, Z. et al. Bonding properties of aluminum nitride at high pressure. Inorg. Chem. 56, 7494–7500 (2017).

    Article  CAS  PubMed  Google Scholar 

  40. Prasad, D. L. V. K., Ashcroft, N. W. & Hoffmann, R. Evolving structural diversity and metallicity in compressed lithium azide. J. Phys. Chem. C 117, 20838–20846 (2013).

    Article  CAS  Google Scholar 

  41. Zhang, M. et al. Structural and electronic properties of sodium azide at high pressure: a first principles study. Solid State Commun. 161, 13–18 (2013).

    Article  CAS  Google Scholar 

  42. Salke, N. P. et al. Tungsten hexanitride with single-bonded armchairlike hexazine structure at high pressure. Phys. Rev. Lett. 126, 065702 (2021).

    Article  CAS  PubMed  Google Scholar 

  43. Wang, Y. et al. Stabilization of hexazine rings in potassium polynitride at high pressure. Nat. Chem. 14, 794–800 (2022).

    Article  CAS  PubMed  Google Scholar 

  44. Kantor, I. et al. BX90: a new diamond anvil cell design for X-ray diffraction and optical measurements. Rev. Sci. Instrum. 83, 125102 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Olijnyk, H. High pressure X-ray diffraction studies on solid N2 up to 43.9 GPa. J. Chem. Phys. 93, 8968 (1990).

    Article  CAS  Google Scholar 

  46. Winzenick, M., Vijayakumar, V. & Holzapfel, W. B. High-pressure X-ray diffraction on potassium and rubidium up to 50 GPa. Phys. Rev. B 50, 12381–12385 (1994).

    Article  CAS  Google Scholar 

  47. Bykova, E. Single-Crystal X-ray Diffraction at Extreme Conditions in Mineral Physics and Material Sciences. PhD thesis, Univ. Bayreuth (2015).

  48. Bykov, M. et al. Stabilization of pentazolate anions in the high-pressure compounds Na2N5 and NaN5 and in the sodium pentazolate framework NaN5·N2. Dalton Trans. 50, 7229–7237 (2021).

    Article  CAS  PubMed  Google Scholar 

  49. Turnbull, R. et al. Unusually complex phase of dense nitrogen at extreme conditions. Nat. Commun. 9, 4717 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Mills, R. L., Olinger, B. & Cromer, D. T. Structures and phase diagrams of N2 and CO to 13 GPa by X-ray diffraction. J. Chem. Phys. 84, 2837 (1986).

    Article  CAS  Google Scholar 

  51. Li, J. et al. Pressure-induced polymerization of nitrogen in potassium azides. Europhys. Lett. 104, 16005 (2013).

    Article  Google Scholar 

  52. Xia, K. et al. A novel superhard tungsten nitride predicted by machine-learning accelerated crystal structure search. Sci. Bull. 63, 817–824 (2018).

    Article  CAS  Google Scholar 

  53. Zhong, X. et al. Pressure stabilization of long-missing bare C6 hexagonal rings in binary sesquicarbides. Chem. Sci. 5, 3936–3940 (2014).

    Article  CAS  Google Scholar 

  54. Yang, Q., Zhao, K., Liu, H. & Zhang, S. Superconductive sodium carbides with pentagon carbon at high pressures. J. Phys. Chem. Lett. 12, 5850–5856 (2021).

    Article  CAS  PubMed  Google Scholar 

  55. Sun, C. et al. Synthesis of AgN5 and its extended 3D energetic framework. Nat. Commun. 9, 1269 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Zhang, C., Sun, C., Hu, B., Yu, C. & Lu, M. Synthesis and characterization of the pentazolate anion cyclo-N5ˉ in (N5)6(H3O)3(NH4)4Cl. Science 355, 374–376 (2017).

    Article  CAS  PubMed  Google Scholar 

  57. Akahama, Y. & Kawamura, H. Pressure calibration of diamond anvil Raman gauge to 410 GPa. J. Phys. Conf. Ser. 215, 012195 (2010).

    Article  Google Scholar 

  58. Fedotenko, T. et al. Laser heating setup for diamond anvil cells for in situ synchrotron and in house high and ultra-high pressure studies. Rev. Sci. Instrum. 90, 104501 (2019).

    Article  Google Scholar 

  59. Spahr, D. et al. Tetrahedrally coordinated sp3-hybridized carbon in Sr2CO4 orthocarbonate at ambient conditions. Inorg. Chem. 60, 5419–5422 (2021).

    Article  CAS  PubMed  Google Scholar 

  60. Rigaku Oxford Diffraction. CrysAlisPro Software system (2015); https://www.rigaku.com/products/crystallography/crysalis

  61. Petrícek, V., Dušek, M. & Palatinus, L. Crystallographic computing system JANA2006: general features. Z. Krist. 229, 345–352 (2014).

    Google Scholar 

  62. Zurkowski, C. C., Lavina, B., Chariton, S., Prakapenka, V. & Campbell, A. J. Stability of Fe2S and Fe12S7 to 125 GPa; implications for S-rich planetary cores. Geochem. Perspect. Lett. 21, 47–52 (2022).

    Article  Google Scholar 

  63. Zhang, L., Yuan, H., Meng, Y. & Mao, H. K. Development of high-pressure multigrain X-ray diffraction for exploring the Earth’s interior. Engineering 5, 441–447 (2019).

    Article  CAS  Google Scholar 

  64. Prescher, C. & Prakapenka, V. B. DIOPTAS: a program for reduction of two-dimensional X-ray diffraction data and data exploration. High Press. Res. 35, 223–230 (2015).

    Article  CAS  Google Scholar 

  65. Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

    Article  PubMed  Google Scholar 

  66. Giannozzi, P. et al. Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys. Condens. Matter 29, 465901 (2017).

    Article  CAS  PubMed  Google Scholar 

  67. Giannozzi, P. et al. Quantum ESPRESSO toward the exascale. J. Chem. Phys. 152, 154105 (2020).

    Article  CAS  PubMed  Google Scholar 

  68. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  69. Perdew, J. P. et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008).

    Article  PubMed  Google Scholar 

  70. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Article  Google Scholar 

  71. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article  CAS  Google Scholar 

  72. Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metalamorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).

    Article  CAS  Google Scholar 

  73. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  74. Ivashchenko, V. I., Turchi, P. E. A., Shevchenko, V. I. & Olifan, E. I. First-principles study of phase stability of stoichiometric vanadium nitrides. Phys. Rev. B 84, 174108 (2011).

    Article  Google Scholar 

  75. Asker, C., Belonoshko, A. B., Mikhaylushkin, A. S. & Abrikosov, I. A. First-principles solution to the problem of Mo lattice stability. Phys. Rev. B 77, 220102 (2008).

    Article  Google Scholar 

  76. Asker, C., Belonoshko, A.B., Mikhaylushkin, A.S. & Abrikosov, I.A. First-principles solution to the problem of Mo lattice stability. Phys. Rev. B 77, 220102 (2008).

    Article  Google Scholar 

  77. Laniel, D., Svitlyk, V., Weck, G. & Loubeyre, P. Pressure-induced chemical reactions in the N2(H2)2 compound: from the N2 and H2 species to ammonia and back down into hydrazine. Phys. Chem. Chem. Phys. 20, 4050–4057 (2018).

    Article  CAS  PubMed  Google Scholar 

  78. Spaulding, D.K. et al. Pressure-induced chemistry in a nitrogen-hydrogen host-guest structure. Nat. Commun. 5, 5739 (2014).

    Article  CAS  PubMed  Google Scholar 

  79. Laniel, D., Weck, G. & Loubeyre, P. Xe(N2)2 compound to 150 GPa: Reluctance to the formation of a xenon nitride. P. Phys. Rev. B 94, 174109 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the Deutsches Elektronen-Synchrotron (DESY, PETRA III) and the European Synchrotron Radiation Facility (ESRF) for provision of beamtime at the P02.2 and, ID15b and ID11 beamlines, respectively. D.L. thanks the Alexander von Humboldt Foundation, the Deutsche Forschungsgemeinschaft (DFG, project LA-4916/1-1) and the UKRI Future Leaders Fellowship (MR/V025724/1) for financial support. N.D. and L.D. thank the Federal Ministry of Education and Research, Germany (BMBF, grant no. 05K19WC1) and the Deutsche Forschungsgemeinschaft (DFG projects DU 954–11/1, DU 393–9/2 and DU 393–13/1) for financial support. Support from the Swedish Research Council (VR) grant no. 2019-05600, the Swedish Government Strategic Research Areas in Materials Science on Functional Materials at Linköping University (Faculty Grant SFO-Mat-LiU no. 2009 00971) and SeRC, and the Knut and Alice Wallenberg Foundation (Wallenberg Scholar grant no. KAW-2018.0194) is gratefully acknowledged. Computations were performed on resources provided by the Swedish National Infrastructure for Computing (SNIC) at the PDC Centre for High Performance Computing (PDC-HPC) and the National Supercomputer Center (NSC). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. For the purpose of open access, we have applied a Creative Commons Attribution (CC BY) licence to any author accepted manuscript version arising from this submission.

Author information

Authors and Affiliations

Authors

Contributions

D.L., L.D. and N.D. designed the work. D.L. prepared the high-pressure experiments, and T.F. and G.A. performed the sample laser-heating. D.L., Y.Y., T.F., S.K., A.A., C.G., E.L.B., K.G., M.H. and J.W. contributed to the synchrotron XRD experiments. D.L. and L.D. processed the synchrotron XRD data. F.T. and I.A.A. performed the theoretical calculations. A.I.A, T.B.M. and I.H. carried out the analysis and provided the visualization of the charge densities. D.L., F.T. and L.D. contextualized the data interpretation. D.L., F.T., L.D., N.D. and I.A.A. prepared the first draft of the manuscript with contributions from all other authors. All authors commented on successive drafts and have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Dominique Laniel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Karl Christe and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Microphotographs of the samples in diamond anvil cells.

Microphotographs of the K-N samples in diamond anvil cells. a) One sample of KN3 embedded in N2 at 46 GPa before laser-heating and b) after laser-heating. c) The second sample KN3 embedded in N2 at 58 GPa before laser-heating and d) after laser-heating. For both sample, the opaque portion grew substantially after laser-heating, a sign of nitrogen diffusion into the KN3 precursor and thus the formation of a nitrogen-rich compound.

Extended Data Fig. 2 Raman spectroscopy measurements.

a) Raman spectroscopy measurements done on a KN3 + N2 sample. Spectra collected upon loading (at 12 GPa), as well as before and after laser-heating at 46 GPa. The inset shows an enlargement of the spectra for frequencies between 1600 and 2900 cm−1. b) An enlargement of the spectra between 1200 and 1550 cm−1. After laser-heating, the intense mode characteristic of the N3 azide (~ 1470 cm−1 at 46.0 GPa) disappears indicating the chemical reaction of KN3 into another compound, that is K9N56. Broad modes centered around 1930 and 2160 cm−1 appear (see inset in a)), which could belong to the N2 molecules trapped in K9N56, as previously identified in the N2(H2)2 (ref. 77), (N2)6(H2)7 (ref. 78) and Xe(N2)2 (ref. 79) compounds. Alternatively, they could be due to fluorescence produced by the quenched sample.

Source data

Extended Data Fig. 3 Interatomic distance and stress during molecular dynamics calculations.

Average interatomic distances and stress in the K9N56 compound at 61 GPa obtained by AIMD simulations at 300 K as a function of simulation time. The AIMD simulations were started from the structure relaxed at 61 GPa. Pressure equilibrated to about 70 GPa at finite temperature. The first 800 steps were treated as equlillibration steps and are not shown. a) Average interatomic distance for the N5 rings, N6 rings and N2 dimers in K9N56. b) Components of the stress tensor σ as a function of the simulation time. These calculations both show i) the dynamical stability of the K9N56 compound at 300 K; ii) interatomic values in agreement with those observed experimentally; iii) the substantially larger thermal motion of the N2 and N6 species, in accordance with the thermal displacement parameters found experimentally.

Source data

Extended Data Fig. 4 Electronic density of states (eDOS) of K9N56 at 61 GPa.

Electronic density of states (eDOS) of K9N56 at 61 GPa calculated for the relaxed structures obtained in static calculations with an electronic temperature of Tel = 800 K (green line) and Tel = 6000 K (black line). Both sets of calculations suggest K9N56 to be a metal, having filled states at the Fermi energy. The comparison between the two electronic temperatures shows the smearing effect at higher temperatures.

Source data

Extended Data Fig. 5 Calculated electronic density of states of metallic K9N56 at 61 GPa.

Calculated partial electronic density of states (eDOS) of metallic K9N56 at 61 GPa obtained in static calculations with an electronic temperature of Tel = 6000 K. a) eDOS of K9N56 for the relaxed structure. b) Enlargement of the partial eDOS around the Fermi energy. The contribution from the electronic states of the potassium atoms’ at the Fermi energy is seen to be essentially null, with the nitrogen atoms found to be driving the compound’s metallicity (that is anion-driven metallicity).

Source data

Supplementary information

Supplementary Information

Supplementary Figs. 1–9 and Supplementary Tables 1–4.

Supplementary Data 1

Crystallographic data for K9N56 at 61 GPa.

Supplementary Data 2

Crystallographic data for K9N56 at 61 GPa, structure factors.

Supplementary Data 3

Crystallographic data for K9N56 at 58 GPa.

Supplementary Data 4

Crystallographic data for K9N56 at 58 GPa, structure factors.

Supplementary Data 5

Source data for Supplementary Figs. 3 and 9.

Supplementary Data 6

Molecular dynamics first and last steps.

Supplementary Data 7

Electronic structure calculations atomic coordinates of the optimized computational models.

Source data

Source Data Fig. 2

Raman spectra collected on KN3 during compression and on K9N56 resulting from laser-heating.

Source Data Fig. 3

Data include powder X-ray diffraction patterns as well as the volume of the unit cell of the K9N56 compound at various pressures.

Source Data Extended Data Fig./Table 2

Raman spectra collected on the K-N samples at 12 GPa, 46 GPa (before laser-heating) and 46 GPa (after laser-heating).

Source Data Extended Data Fig./Table 3

AIMD simulations at 300 K, the interatomic distances are provided as well as the stress, both as a function of the number of steps.

Source Data Extended Data Fig./Table 4

Raw data of the electronic density of states (eDOS) of K9N56 at 61 GPa.

Source Data Extended Data Fig./Table 5

Raw data of the calculated electronic density of states of metallic K9N56 at 61 GPa obtained in static calculations with an electronic temperature of Tel = 6000 K.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laniel, D., Trybel, F., Yin, Y. et al. Aromatic hexazine [N6]4− anion featured in the complex structure of the high-pressure potassium nitrogen compound K9N56. Nat. Chem. 15, 641–646 (2023). https://doi.org/10.1038/s41557-023-01148-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-023-01148-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing