Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Metalloradical approach for concurrent control in intermolecular radical allylic C−H amination

Abstract

Although they offer great potentials, the high reactivity and diverse pathways of radical chemistry pose difficult problems for applications in organic synthesis. In addition to the differentiation of multiple competing pathways, the control of various selectivities in radical reactions presents both formidable challenges and great opportunities. To regulate chemoselectivity and regioselectivity, as well as diastereoselectivity and enantioselectivity, calls for the formulation of conceptually new approaches and fundamentally different governing principles. Here we show that Co(II)-based metalloradical catalysis enables the radical chemoselective intermolecular amination of allylic C−H bonds through the employment of modularly designed D2-symmetric chiral amidoporphyrins with a tunable pocket-like environment as the supporting ligand. The reaction exhibits a remarkable convergence of regioselectivity, diastereoselectivity and enantioselectivity in a single catalytic operation. In addition to demonstrating the unique opportunities of metalloradical catalysis in controlling homolytic radical reactions, the Co(II)-catalysed convergent C–H amination offers a route to synthesize valuable chiral α-tertiary amines directly from an isomeric mixture of alkenes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Radical pathways for direct functionalization of allylic C–H bonds: challenges, opportunities and solution.
Fig. 2: Convergent radical amination of allylic C−H bonds with organic azides via Co(II)-based MRC.
Fig. 3: Mechanistic studies on the Co(II)-based metalloradical system for convergent amination of allylic C–H bonds.
Fig. 4: Synthetic applications of the resulting chiral α-tertiary amines from Co(II)-catalysed allylic C–H amination.

Similar content being viewed by others

Data availability

All the data that support the findings of this study, which include experimental procedures and compound characterization, are available within the paper and its Supplementary Information. CIF crystallographic data files and xys coordinates of the optimized structures are available as Supplementary Data. Crystallographic data for the structures reported in this article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 2160224 (3as), 2160223 (3aaa) and 2160225 (3da). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/.

References

  1. Kochi, J. K. & Krusic, P. J. Isomerization and electron spin resonance of allylic radicals. J. Am. Chem. Soc. 90, 7157–7159 (1968).

    Article  CAS  Google Scholar 

  2. Huang, H.-M., Bellotti, P. & Glorius, F. Transition metal-catalysed allylic functionalization reactions involving radicals. Chem. Soc. Rev. 49, 6186–6197 (2020).

    Article  PubMed  Google Scholar 

  3. Wohl, A. Bromierung ungesättigter verbindungen mit N-Brom-acetamid, ein beitrag zur lehre vom verlauf chemischer vorgänge. Ber. Dtsch. Chem. 52, 51–63 (1919).

    Article  Google Scholar 

  4. Ziegler, K. et al. Die synthese des cantharidins. Justus Liebigs Ann. Chem. 551, 1–79 (1942).

    Article  CAS  Google Scholar 

  5. Incremona, J. H. & Martin, J. C. N-Bromosuccinimide. Mechanisms of allylic bromination and related reactions. J. Am. Chem. Soc. 92, 627–634 (1970).

    Article  CAS  Google Scholar 

  6. Bloomfield, G. F. Rubber, polyisoprenes, and allied compounds. Part VI. The mechanism of halogen-substitution reactions, and the additive halogenation of rubber and of dihydromyrcene. J. Chem. Soc. 1944, 114–120 (1944).

    Article  Google Scholar 

  7. Eames, J. & Watkinson, M. Catalytic allylic oxidation of alkenes using an asymmetric Kharasch–Sosnovsky reaction. Angew. Chem. Int. Ed. 40, 3567–3571 (2001).

    Article  CAS  Google Scholar 

  8. Andrus, M. B. & Zhou, Z. Highly enantioselective copper−bisoxazoline-catalyzed allylic oxidation of cyclic olefins with tert-butyl p-nitroperbenzoate. J. Am. Chem. Soc. 124, 8806–8807 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Li, J. et al. Site-specific allylic C–H bond functionalization with a copper-bound N-centred radical. Nature 574, 516–521 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Sibi, M. P., Manyem, S. & Zimmerman, J. Enantioselective radical processes. Chem. Rev. 103, 3263–3296 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Proctor, R. S. J., Colgan, A. C. & Phipps, R. J. Exploiting attractive non-covalent interactions for the enantioselective catalysis of reactions involving radical intermediates. Nat. Chem. 12, 990–1004 (2020).

    Article  PubMed  Google Scholar 

  12. Wang, F., Chen, P. & Liu, G. Copper-catalyzed radical relay for asymmetric radical transformations. Acc. Chem. Res. 51, 2036–2046 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. Gu, Q.-S., Li, Z.-L. & Liu, X.-Y. Copper(I)-catalyzed asymmetric reactions involving radicals. Acc. Chem. Res. 53, 170–181 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Demarteau, J., Debuigne, A. & Detrembleur, C. Organocobalt complexes as sources of carbon-centered radicals for organic and polymer chemistries. Chem. Rev. 119, 6906–6955 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. RajanBabu, T. V. & Nugent, W. A. Selective generation of free radicals from epoxides using a transition-metal radical. A powerful new tool for organic synthesis. J. Am. Chem. Soc. 116, 986–997 (1994).

    Article  CAS  Google Scholar 

  16. Gansäuer, A., Fan, C.-A., Keller, F. & Keil, J. Titanocene-catalyzed regiodivergent epoxide openings. J. Am. Chem. Soc. 129, 3484–3485 (2007).

    Article  PubMed  Google Scholar 

  17. Yao, C., Dahmen, T., Gansäuer, A. & Norton, J. Anti-Markovnikov alcohols via epoxide hydrogenation through cooperative catalysis. Science 364, 764–767 (2019).

    Article  CAS  PubMed  Google Scholar 

  18. Ye, K.-Y., McCallum, T. & Lin, S. Bimetallic radical redox-relay catalysis for the isomerization of epoxides to allylic alcohols. J. Am. Chem. Soc. 141, 9548–9554 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Kapat, A., Sperger, T., Guven, S. & Schoenebeck, F. E-Olefins through intramolecular radical relocation. Science 363, 391 (2019).

    Article  CAS  PubMed  Google Scholar 

  20. Roy, S., Das, S. K., Khatua, H., Das, S. & Chattopadhyay, B. Road map for the construction of high-valued N-heterocycles via denitrogenative annulation. Acc. Chem. Res. 54, 4395–4409 (2021).

    Article  CAS  PubMed  Google Scholar 

  21. Goswami, M. et al. Characterization of porphyrin-Co(III)-‘nitrene radical’ species relevant in catalytic nitrene transfer reactions. J. Am. Chem. Soc. 137, 5468–5479 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jin, L.-M., Xu, P., Xie, J. & Zhang, X. P. Enantioselective intermolecular radical C–H amination. J. Am. Chem. Soc. 142, 20828–20836 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Johannsen, M. & Jørgensen, K. A. Allylic amination. Chem. Rev. 98, 1689–1708 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Jin, L. M. et al. Effective synthesis of chiral N-fluoroaryl aziridines through enantioselective aziridination of alkenes with fluoroaryl azides. Angew. Chem. Int. Ed. 52, 5309–5313 (2013).

    Article  CAS  Google Scholar 

  25. Ramirez, T. A., Zhao, B. & Shi, Y. Recent advances in transition metal-catalyzed sp3 C–H amination adjacent to double bonds and carbonyl groups. Chem. Soc. Rev. 41, 931–942 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. Lei, H., Rovis, T. & Site-selective, A. Amination catalyst discriminates between nearly identical C–H bonds of unsymmetrical disubstituted alkenes. Nat. Chem. 12, 725–731 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Reed, S. A. & White, M. C. Catalytic intermolecular Linear allylic C–H amination via heterobimetallic catalysis. J. Am. Chem. Soc. 130, 3316–3318 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ma, R. & White, M. C. C–H to C–N cross-coupling of sulfonamides with olefins. J. Am. Chem. Soc. 140, 3202–3205 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu, G., Yin, G. & Wu, L. Palladium-catalyzed intermolecular aerobic oxidative amination of terminal alkenes: efficient synthesis of linear allylamine derivatives. Angew. Chem. Int. Ed. 47, 4733–4736 (2008).

    Article  CAS  Google Scholar 

  30. Burman, J. S. & Blakey, S. B. Regioselective intermolecular allylic C−H amination of disubstituted olefins via Rhodium/π-Allyl intermediates. Angew. Chem. Int. Ed. 56, 13666–13669 (2017).

    Article  CAS  Google Scholar 

  31. Knecht, T., Mondal, S., Ye, J. H., Das, M. & Glorius, F. Intermolecular, branch-selective, and redox-neutral Cp*IrIII-catalyzed allylic C–H amidation. Angew. Chem. Int. Ed. 58, 7117–7121 (2019).

    Article  CAS  Google Scholar 

  32. Nishioka, Y., Uchida, T. & Katsuki, T. Enantio- and regioselective intermolecular benzylic and allylic C–H bond amination. Angew. Chem. Int. Ed. 52, 1739–1742 (2013).

    Article  CAS  Google Scholar 

  33. Liang, C. et al. Toward a synthetically useful stereoselective C−H amination of hydrocarbons. J. Am. Chem. Soc. 130, 343–350 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Ide, T. et al. Late-stage intermolecular allylic C–H amination. J. Am. Chem. Soc. 143, 14969–14975 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jia, Z.-J., Gao, S. & Arnold, F. H. Enzymatic primary amination of benzylic and allylic C(sp3)–H bonds. J. Am. Chem. Soc. 142, 10279–10283 (2020).

    Article  CAS  PubMed  Google Scholar 

  36. Dolan, N. S., Scamp, R. J., Yang, T., Berry, J. F. & Schomaker, J. M. Catalyst-controlled and tunable, chemoselective silver-catalyzed intermolecular nitrene transfer: experimental and computational studies. J. Am. Chem. Soc. 138, 14658–14667 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Teh, W. P., Obenschain, D. C., Black, B. M. & Michael, F. E. Catalytic metal-free allylic C–H amination of terpenoids. J. Am. Chem. Soc. 142, 16716–16722 (2020).

    Article  CAS  PubMed  Google Scholar 

  38. Sharpless, K. B., Hori, T., Truesdale, L. K. & Dietrich, C. O. Allylic amination of olefins and acetylenes by imido selenium compounds. J. Am. Chem. Soc. 98, 269–271 (1976).

    Article  CAS  Google Scholar 

  39. Bao, H. & Tambar, U. K. Catalytic enantioselective allylic amination of unactivated terminal olefins via an ene reaction/[2, 3]-rearrangement. J. Am. Chem. Soc. 134, 18495–18498 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bayeh, L., Le, P. Q. & Tambar, U. K. Catalytic allylic oxidation of internal alkenes to a multifunctional chiral building block. Nature 547, 196–200 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cheng, Q., Chen, J., Lin, S. & Ritter, T. Allylic amination of alkenes with iminothianthrenes to afford alkyl allylamines. J. Am. Chem. Soc. 142, 17287–17293 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yi, X. & Hu, X. Intermolecular oxidative amination of unactivated alkenes by dual photoredox and copper catalysis. Chem. Sci. 12, 1901–1906 (2021).

    Article  CAS  Google Scholar 

  43. Wang, Y., Lin, Z., Oliveira, J. C. A. & Ackermann, L. Electro-oxidative intermolecular allylic C(sp3)–H aminations. J. Org. Chem. 86, 15935–15945 (2021).

    Article  CAS  PubMed  Google Scholar 

  44. Purser, S., Moore, P. R., Swallow, S. & Gouverneur, V. Fluorine in medicinal chemistry. Chem. Soc. Rev. 37, 320–330 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Hager, A., Vrielink, N., Hager, D., Lefranc, J. & Trauner, D. Synthetic approaches towards alkaloids bearing α-tertiary amines. Nat. Prod. Rep. 33, 491–522 (2016).

    Article  CAS  PubMed  Google Scholar 

  46. Singh, K., Staig, S. J. & Weaver, J. D. Facile synthesis of Z-alkenes via uphill catalysis. J. Am. Chem. Soc. 136, 5275–5278 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Toniolo, C., Crisma, M., Formaggio, F. & Peggion, C. Control of peptide conformation by the Thorpe–Ingold effect (Cα-tetrasubstitution). Pept. Sci. 60, 396–419 (2001).

    Article  CAS  Google Scholar 

  48. Meusel, M. & Gütschow, M. Recent developments in hydantoin chemistry. A review. Org. Prep. Proced. Int. 36, 391–443 (2004).

    Article  CAS  Google Scholar 

  49. Leonard, D. J., Ward, J. W. & Clayden, J. Asymmetric α-arylation of amino acids. Nature 562, 105–109 (2018).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful for financial support from NIH (R01-GM132471) and in part from NSF (CHE-1900375 and CHE-2154885). We also thank the financial support from NIH (S10-OD026910) and NSF (CHE-2117246) for the purchases of NMR spectrometers at the Magnetic Resonance Center of Boston College.

Author information

Authors and Affiliations

Authors

Contributions

P.X. conducted the experiments. J.X. conducted the DFT calculations. D.-S.W. assisted the project. X.P.Z. conceived the work and directed the project. P.X. and X.P.Z. designed the experiments. P.X. and X.P.Z. wrote the manuscript.

Corresponding author

Correspondence to X. Peter Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Wei Guan, Forrest Michael and Tanguy Saget for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary information on experimental methods, synthetic procedures and compound characterizations, additional discussion, computational details, X-ray crystallographic data, NMR spectra and HPLC traces.

Supplementary Data 1

Crystallographic data for compound 3as; CCDC reference 2160224.

Supplementary Data 2

Crystallographic data for compound 3aaa; CCDC reference 2160223.

Supplementary Data 3

Crystallographic data for compound 3da; CCDC reference 2160225.

Supplementary Data 4

Energies and coordinates in Xys format of DFT computations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, P., Xie, J., Wang, DS. et al. Metalloradical approach for concurrent control in intermolecular radical allylic C−H amination. Nat. Chem. 15, 498–507 (2023). https://doi.org/10.1038/s41557-022-01119-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-022-01119-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing