Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Enantioselective fullerene functionalization through stereochemical information transfer from a self-assembled cage


The regioselective functionalization of C60 remains challenging, while the enantioselective functionalization of C60 is difficult to explore due to the need for complex chiral tethers or arduous chromatography. Metal–organic cages have served as masks to effect the regioselective functionalization of C60. However, it is difficult to control the stereochemistry of the resulting fullerene adducts through this method. Here we report a means of defining up to six stereocentres on C60, achieving enantioselective fullerene functionalization. This method involves the use of a metal–organic cage built from a chiral formylpyridine. Fullerenes hosted within the cavity of the cage can be converted into a series of C60 adducts through chemo-, regio- and stereo-selective Diels–Alder reactions with the edges of the cage. The chiral formylpyridine ultimately dictates the stereochemistry of these chiral fullerene adducts without being incorporated into them. Such chiral fullerene adducts may become useful in devices requiring circularly polarized light manipulation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Preparation and characterization of cages 1 and 2.
Fig. 2: Reaction of cage 2 with C60 and PCBM.
Fig. 3: X-ray crystal structures of cages ΔΛΛΛ-C60·2 and PCBM·2′.
Fig. 4: Photophysics of retrieved fullerene adducts 4 and 5.

Data availability

All data supporting the findings of this study are included within the Article and its Supplementary Information, and are also available from the corresponding author on request. Crystallographic data for the structures reported in this paper have been deposited at the Cambridge Crystallographic Data Centre, under the deposition numbers 24124135 (ΛΛΛΛ-1), 24124134 (ΔΛΛΛ-C60·2) and 24124133 (PCBM·2′). Copies of these data can be obtained free of charge via Source data are provided with this paper.


  1. Percec, V. et al. Steric communication of chiral information observed in dendronized polyacetylenes. J. Am. Chem. Soc. 128, 16365–16372 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Clayden, J., Lund, A., Vallverdú, L. & Helliwell, M. Ultra-remote stereocontrol by conformational communication of information along a carbon chain. Nature 431, 966–971 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Yashima, E. et al. Supramolecular helical systems: helical assemblies of small molecules, foldamers, and polymers with chiral amplification and their functions. Chem. Rev. 116, 13752–13990 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Tsiamantas, C. et al. Selective dynamic assembly of disulfide macrocyclic helical foldamers with remote communication of handedness. Angew. Chem. Int. Ed. 55, 6848–6852 (2016).

    Article  CAS  Google Scholar 

  5. Eelkema, R. et al. Nanomotor rotates microscale objects. Nature 440, 163–163 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Han, B. et al. Asymmetric organocatalysis: an enabling technology for medicinal chemistry. Chem. Soc. Rev. 50, 1522–1586 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. Zhao, C. et al. Chiral amide directed assembly of a diastereo- and enantiopure supramolecular host and its application to enantioselective catalysis of neutral substrates. J. Am. Chem. Soc. 135, 18802–18805 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Pan, M., Wu, K., Zhang, J.-H. & Su, C.-Y. Chiral metal–organic cages/containers (MOCs): From structural and stereochemical design to applications. Coord. Chem. Rev. 378, 333–349 (2019).

    Article  CAS  Google Scholar 

  9. Argent, S. P., Riis-Johannessen, T., Jeffery, J. C., Harding, L. P. & Ward, M. D. Diastereoselective formation and optical activity of an M4L6 cage complex. Chem. Commun. 4647–4649 (2005)..

  10. Castilla, A. M. et al. High-fidelity stereochemical memory in a FeII4L4 tetrahedral capsule. J. Am. Chem. Soc. 135, 17999–18006 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Nishioka, Y., Yamaguchi, T., Kawano, M. & Fujita, M. Asymmetric [2 + 2] olefin cross photoaddition in a self-assembled host with remote chiral auxiliaries. J. Am. Chem. Soc. 130, 8160–8161 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Mislow, K. & Siegel, J. Stereoisomerism and local chirality. J. Am. Chem. Soc. 106, 3319–3328 (1984).

    Article  CAS  Google Scholar 

  13. Howlader, P., Zangrando, E. & Mukherjee, P. S. Self-assembly of enantiopure Pd12 tetrahedral homochiral nanocages with tetrazole linkers and chiral recognition. J. Am. Chem. Soc. 142, 9070–9078 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Xuan, W., Zhang, M., Liu, Y., Chen, Z. & Cui, Y. A chiral quadruple-stranded helicate cage for enantioselective recognition and separation. J. Am. Chem. Soc. 134, 6904–6907 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Brown, C. J., Bergman, R. G. & Raymond, K. N. Enantioselective catalysis of the aza-Cope rearrangement by a chiral supramolecular assembly. J. Am. Chem. Soc. 131, 17530–17531 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Mahata, K., Frischmann, P. D. & Würthner, F. Giant electroactive M4L6 tetrahedral host self-assembled with Fe(II) vertices and perylene bisimide dye edges. J. Am. Chem. Soc. 135, 15656–15661 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Kishi, N., Li, Z., Yoza, K., Akita, M. & Yoshizawa, M. An M2L4 molecular capsule with an anthracene shell: encapsulation of large guests up to 1 nm. J. Am. Chem. Soc. 133, 11438–11441 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Purba, P. C., Maity, M., Bhattacharyya, S. & Mukherjee, P. S. A self-assembled palladium(II) barrel for binding of fullerenes and photosensitization ability of the fullerene-encapsulated barrel. Angew. Chem. Int. Ed. 60, 14109–14116 (2021).

    Article  CAS  Google Scholar 

  19. Nakamura, T., Ube, H., Miyake, R. & Shionoya, M. A C60-templated tetrameric porphyrin barrel complex via zinc-mediated self-assembly utilizing labile capping ligands. J. Am. Chem. Soc. 135, 18790–18793 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Huang, N. et al. Tailor-made pyrazolide-based metal–organic frameworks for selective catalysis. J. Am. Chem. Soc. 140, 6383–6390 (2018).

    Article  CAS  PubMed  Google Scholar 

  21. Fuertes-Espinosa, C. et al. Supramolecular fullerene sponges as catalytic masks for regioselective functionalization of C60. Chem 6, 169–186 (2020).

    Article  CAS  Google Scholar 

  22. Ubasart, E. et al. A three-shell supramolecular complex enables the symmetry-mismatched chemo- and regioselective bis-functionalization of C60. Nat. Chem. 13, 420–427 (2021).

    Article  CAS  PubMed  Google Scholar 

  23. Chen, B., Holstein, J. J., Horiuchi, S., Hiller, W. G. & Clever, G. H. Pd(II) coordination sphere engineering: pyridine cages, quinoline bowls, and heteroleptic pills binding one or two fullerenes. J. Am. Chem. Soc. 141, 8907–8913 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Leonhardt, V., Fimmel, S., Krause, A.-M. & Beuerle, F. A covalent organic cage compound acting as a supramolecular shadow mask for the regioselective functionalization of C60. Chem. Sci. 11, 8409–8415 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nishimura, T. et al. Macromolecular helicity induction on a poly(phenylacetylene) with C2-symmetric chiral [60]fullerene-bisadducts. J. Am. Chem. Soc. 126, 11711–11717 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Bianco, A. et al. Synthesis, chiroptical properties, and configurational assignment of fulleroproline derivatives and peptides. J. Am. Chem. Soc. 118, 4072–4080 (1996).

    Article  CAS  Google Scholar 

  27. Shi, W. et al. Fullerene desymmetrization as a means to achieve single-enantiomer electron acceptors with maximized chiroptical responsiveness. Adv. Mater. 33, 2004115 (2021).

    Article  CAS  Google Scholar 

  28. Fuertes-Espinosa, C., Pujals, M. & Ribas, X. Supramolecular purification and regioselective functionalization of fullerenes and endohedral metallofullerenes. Chem 6, 3219–3262 (2020).

    Article  CAS  Google Scholar 

  29. Thilgen, C. & Diederich, F. Structural aspects of fullerene chemistry – a journey through fullerene chirality. Chem. Rev. 106, 5049–5135 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Riala, M. & Chronakis, N. A facile access to enantiomerically pure [60]fullerene bisadducts with the inherently chiral trans-3 addition pattern. Org. Lett. 13, 2844–2847 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Filippone, S., Maroto, E. E., Martín-Domenech, Á., Suarez, M. & Martín, N. An efficient approach to chiral fullerene derivatives by catalytic enantioselective 1,3-dipolar cycloadditions. Nat. Chem. 1, 578–582 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Djojo, F. & Hirsch, A. Synthesis and chiroptical properties of enantiomerically pure bis- and trisadducts of C60 with an inherent chiral addition pattern. Chem. Eur. J. 4, 344–356 (1998).

    Article  CAS  Google Scholar 

  33. Evans, D. A., Ennis, M. D. & Mathre, D. J. Asymmetric alkylation reactions of chiral imide enolates. A practical approach to the enantioselective synthesis of alpha-substituted carboxylic acid derivatives. J. Am. Chem. Soc. 104, 1737–1739 (1982).

    Article  CAS  Google Scholar 

  34. Bordoli, R. J. & Goldup, S. M. An efficient approach to mechanically planar chiral rotaxanes. J. Am. Chem. Soc. 136, 4817–4820 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Naaman, R., Paltiel, Y. & Waldeck, D. H. Chiral molecules and the electron spin. Nat. Rev. Chem. 3, 250–260 (2019).

    Article  CAS  Google Scholar 

  36. Meng, W., Clegg, J. K., Thoburn, J. D. & Nitschke, J. R. Controlling the transmission of stereochemical information through space in terphenyl-edged Fe4L6 cages. J. Am. Chem. Soc. 133, 13652–13660 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Ousaka, N. et al. Efficient long-range stereochemical communication and cooperative effects in self-assembled Fe4L6 cages. J. Am. Chem. Soc. 134, 15528–15537 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Ronson, T. K., Pilgrim, B. S. & Nitschke, J. R. Pathway-dependent post-assembly modification of an anthracene-edged MII4L6 tetrahedron. J. Am. Chem. Soc. 138, 10417–10420 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. Knof, U. & von Zelewsky, A. Predetermined chirality at metal centers. Angew. Chem. Int. Ed. 38, 302–322 (1999).

    Article  Google Scholar 

  40. Guerra, S., Schillinger, F., Sigwalt, D., Holler, M. & Nierengarten, J.-F. Synthesis of optically pure [60]fullerene e,e,e-tris adducts. Chem. Commun. 49, 4752–4754 (2013).

    Article  CAS  Google Scholar 

  41. Xiao, Z., Geng, X., He, D., Jia, X. & Ding, L. Development of isomer-free fullerene bisadducts for efficient polymer solar cells. Energy Environ. Sci. 9, 2114–2121 (2016).

    Article  CAS  Google Scholar 

  42. Köhler, A. & Bässler, H. in Electronic Processes in Organic Semiconductors I–XIII (eds A. Köhler and H. Bässler) (John Wiley & Sons, 2015);

  43. Naaman, R. & Waldeck, D. H. Spintronics and chirality: spin selectivity in electron transport through chiral molecules. Annu. Rev. Phys. Chem. 66, 263–281 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. Bain, C. D. & Whitesides, G. M. Molecular-level control over surface order in self-assembled monolayer films of thiols on gold. Science 240, 62–63 (1988).

    Article  CAS  PubMed  Google Scholar 

  45. Yang, Y., da Costa, R. C., Fuchter, M. J. & Campbell, A. J. Circularly polarized light detection by a chiral organic semiconductor transistor. Nat. Photonics 7, 634–638 (2013).

    Article  CAS  Google Scholar 

  46. O’Neill, M. & Kelly, S. M. Ordered materials for organic electronics and photonics. Adv. Mater. 23, 566–584 (2011).

    Article  PubMed  Google Scholar 

  47. Tarzia, A. & Jelfs, K. E. Unlocking the computational design of metal–organic cages. Chem. Commun. 58, 3717–3730 (2022).

    Article  CAS  Google Scholar 

  48. Nguyen, T. D., Ehrenfreund, E. & Vardeny, Z. V. Spin-polarized light-emitting diode based on an organic bipolar spin valve. Science 337, 204–209 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Kim, Y.-H. et al. Chiral-induced spin selectivity enables a room-temperature spin light-emitting diode. Science 371, 1129–1133 (2021).

    Article  CAS  PubMed  Google Scholar 

  50. Stewart, J. J. P. Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements. J. Mol. Model. 13, 1173–1213 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. SCIGRESS version FJ 2.6 (EU 3.1.9) build 5996.8255.20141202 (Fujitsu Limited, 2013).

Download references


This work was supported by the Engineering and Physical Sciences Research Council (EPSRC, EP/P027067/1) and the European Research Council (695009). Z.L. acknowledges the Cambridge Trust and China Scholarship Council for PhD funding. A.W.H. is the recipient of an Astex Pharmaceuticals Sustaining Innovation Post-Doctoral Award. S.F. acknowledges funding from the Engineering and Physical Sciences Research Council (EPSRC, UK) through an EPSRC Doctoral Prize Fellowship. We thank Diamond Light Source for beamtime on Beamline I19 (CY21497). We also thank the Yusuf Hamied Department of Chemistry NMR facility for characterization data and C. Fuertes-Espinosa for helpful discussions.

Author information

Authors and Affiliations



Z.L, T.K.R and J.R.N. conceived the study and wrote the manuscript. Z.L. performed the synthetic work with assistance from A.W.H. The X-ray data were collected by T.K.R. who also refined the structures. N.V. and A.M. performed chiral HPLC studies on the fullerene adducts. S.F. carried out the transient absorption measurements. Z.L led the project overall. All the authors contributed to the manuscript preparation.

Corresponding author

Correspondence to Jonathan R. Nitschke.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Celedonio Álvarez, Timothy Barendt and Xavi Ribas for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–111.

Supplementary Data 1

Crystallographic data for ΛΛΛΛ-1; (CCDC reference 24124135).

Supplementary Data 2

Crystallographic data for ΔΛΛΛ-C60·2; (CCDC reference 24124134).

Supplementary Data 3

Crystallographic data for PCBM·2′; (CCDC reference 24124133).

Supplementary Data 4

Statistical Source data for Supplementary Information.

Source data

Source Data Fig. 1

Statistical Source Data.

Source Data Fig. 4

Statistical Source Data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lu, Z., Ronson, T.K., Heard, A.W. et al. Enantioselective fullerene functionalization through stereochemical information transfer from a self-assembled cage. Nat. Chem. 15, 405–412 (2023).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing