Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Recyclable cyclic bio-based acrylic polymer via pairwise monomer enchainment by a trifunctional Lewis pair

Abstract

The existing catalyst/initiator systems and methodologies used for the synthesis of polymers can access only a few cyclic polymers composed entirely of a single monomer type, and the synthesis of such authentic cyclic polar vinyl polymers (acrylics) devoid of any foreign motifs remains a challenge. Here we report that a tethered B-P-B trifunctional, intramolecular frustrated Lewis pair catalyst enables the synthesis of an authentic cyclic acrylic polymer, cyclic poly(γ-methyl-α-methylene-γ-butyrolactone) (c-PMMBL), from the bio-based monomer MMBL. Detailed studies have revealed an initiation and propagation mechanism through pairwise monomer enchainment enabled by the cooperative and synergistic initiator/catalyst sites of the trifunctional catalyst. We propose that macrocyclic intermediates and transition states comprising two catalyst molecules are involved in the catalyst-regulated ring expansion and eventual cyclization, forming authentic c-PMMBL rings and concurrently regenerating the catalyst. The cyclic topology of the c-PMMBL polymers imparts an ~50 °C higher onset decomposition temperature and a much narrower degradation window compared with their linear counterparts of similar molecular weight and dispersity, while maintaining high chemical recyclability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Hypothesized REP pathway leading to c-PMMBL.
Fig. 2: Characterization of polymer topology.
Fig. 3: Isolation and structural characterization of reactive intermediates.
Fig. 4: Polymerization kinetics and possible kinetic scenarios for MMBL polymerization.
Fig. 5: Proposed REP mechanism for creating c-PMMBL.
Fig. 6: Comparison of the properties of PMMBL with different topologies.

Similar content being viewed by others

Data availability

Full experimental details and the data supporting the findings of this study are available within the article and its Supplementary Information. Source data are provided with this paper.

References

  1. Bielawski, C. W., Benitez, D. & Grubbs, R. H. An “endless” route to cyclic polymers. Science 297, 2041–2044 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Hong, M. & Chen, E. Y.-X. Completely recyclable biopolymers with linear and cyclic topologies via ring-opening polymerization of γ-butyrolactone. Nat. Chem. 8, 42–49 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Haque, F. M. & Grayson, S. M. The synthesis, properties and potential applications of cyclic polymers. Nat. Chem. 12, 433–444 (2020).

    Article  CAS  PubMed  Google Scholar 

  4. Endo, K. Synthesis and properties of cyclic polymers. Adv. Polym. Sci. 217, 121–183 (2008).

    CAS  Google Scholar 

  5. Zhu, J.-B., Watson, E. M., Tang, J. & Chen, E. Y.-X. A synthetic polymer system with repeatable chemical recyclability. Science 360, 398–403 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. Kammiyada, H., Ouchi, M. & Sawamoto, M. A study on physical properties of cyclic poly(vinyl ether)s synthesized via ring-expansion cationic polymerization. Macromolecules 50, 841–848 (2017).

    Article  CAS  Google Scholar 

  7. Kricheldorf, H. R. Cyclic polymers: synthetic strategies and physical properties. J. Polym. Sci. A 48, 251–284 (2010).

    Article  CAS  Google Scholar 

  8. Ziebarth, J. D. et al. Comparison of critical adsorption points of ring polymers with linear polymers. Macromolecules 49, 8780–8788 (2016).

    Article  Google Scholar 

  9. Gambino, T., Martínez de Ilarduya, A., Alegría, A. & Barroso-Bujans, F. Dielectric relaxations in poly(glycidyl phenyl ether): effects of microstructure and cyclic topology. Macromolecules 49, 1060–1069 (2016).

    Article  CAS  Google Scholar 

  10. Doi, Y. et al. Melt rheology of ring polystyrenes with ultrahigh purity. Macromolecules 48, 3140–3147 (2015).

    Article  CAS  Google Scholar 

  11. Pasquino, R. et al. Viscosity of ring polymer melts. ACS Macro Lett. 2, 874–878 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Roland, C. D., Li, H., Abboud, K. A., Wagener, K. B. & Veige, A. S. Cyclic polymers from alkynes. Nat. Chem. 8, 791–796 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Yamamoto, T. & Tezuka, Y. Cyclic polymers revealing topology effects upon self-assemblies, dynamics and responses. Soft Matter 11, 7458–7468 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Tu, X.-Y., Liu, M.-Z. & Wei, H. Recent progress on cyclic polymers: synthesis, bioproperties, and biomedical applications. J. Polym. Sci. A: 54, 1447–1458 (2016).

    Article  CAS  Google Scholar 

  15. Williams, R. J., Dove, A. P. & O’Reilly, R. K. Self-assembly of cyclic polymers. Polym. Chem. 6, 2998–3008 (2015).

    Article  CAS  Google Scholar 

  16. Liénard, R., De Winter, J. & Coulembier, O. Cyclic polymers: advances in their synthesis, properties, and biomedical applications. J. Polym. Sci. 58, 1481–1502 (2020).

    Article  Google Scholar 

  17. Romio, M. et al. Topological polymer chemistry enters materials science: expanding the applicability of cyclic polymers. ACS Macro Lett. 9, 1024–1033 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. Zhang, K., Lackey, M. A., Cui, J. & Tew, G. N. Gels based on cyclic polymers. J. Am. Chem. Soc. 133, 4140–4148 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Chen, B., Jerger, K., Fréchet, J. M. J. & Szoka, F. C. Jr The influence of polymer topology on pharmacokinetics: differences between cyclic and linear PEGylated poly(acrylic acid) comb polymers. J. Control. Release 140, 203–209 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang, T.-W. & Golder, M. R. Advancing macromolecular hoop construction: recent developments in synthetic cyclic polymer chemistry. Polym. Chem. 12, 958–969 (2021).

    Article  CAS  Google Scholar 

  21. Josse, T., De Winter, J., Gerbaux, P. & Coulembier, O. Cyclic polymers by ring-closure strategies. Angew. Chem. Int. Ed. 55, 13944–13958 (2016).

    Article  CAS  Google Scholar 

  22. Chang, Y. A. & Waymouth, R. M. Recent progress on the synthesis of cyclic polymers via ring-expansion strategies. J. Polym. Sci. A 55, 2892–2902 (2017).

    Article  CAS  Google Scholar 

  23. Sarkar, S. et al. An OCO3− trianionic pincer tungsten(VI) alkylidyne: rational design of a highly active alkyne polymerization catalyst. J. Am. Chem. Soc. 134, 4509–4512 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Miao, Z. et al. Cyclic polyacetylene. Nat. Chem. 13, 792–799 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang, T.-W., Huang, P.-R., Chow, J. L., Kaminsky, W. & Golder, M. R. A cyclic ruthenium benzylidene initiator platform enhances reactivity for ring-expansion metathesis polymerization. J. Am. Chem. Soc. 143, 7314–7319 (2021).

    Article  CAS  PubMed  Google Scholar 

  26. Gonsales, S. A. et al. Highly tactic cyclic polynorbornene: stereoselective ring expansion metathesis polymerization of norbornene catalyzed by a new tethered tungsten-alkylidene catalyst. J. Am. Chem. Soc. 138, 4996–4999 (2016).

    Article  CAS  PubMed  Google Scholar 

  27. Reisberg, S. H., Hurley, H. J., Mathers, R. T., Tanski, J. M. & Getzler, Y. D. Y. L. Lactide cyclopolymerization kinetics, X-ray structure, and solution dynamics of (tBu-SalAmEE)Al and a cautionary tale of polymetalate formation. Macromolecules 46, 3273–3279 (2013).

    Article  CAS  Google Scholar 

  28. Piedra-Arroni, E., Ladavière, C., Amgoune, A. & Bourissou, D. Ring-opening polymerization with Zn(C6F5)2-based Lewis pairs: original and efficient approach to cyclic polyesters. J. Am. Chem. Soc. 135, 13306–13309 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Brown, H. A. & Waymouth, R. M. Zwitterionic ring-opening polymerization for the synthesis of high molecular weight cyclic polymers. Acc. Chem. Res. 46, 2585–2596 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Li, X.-Q., Wang, B., Ji, H.-Y. & Li, Y.-S. Insights into the mechanism for ring-opening polymerization of lactide catalyzed by Zn(C6F5)2/organic superbase Lewis pairs. Catal. Sci. Technol. 6, 7763–7772 (2016).

    Article  CAS  Google Scholar 

  31. Asenjo-Sanz, I., Veloso, A., Miranda, J. I., Pomposo, J. A. & Barroso-Bujans, F. Zwitterionic polymerization of glycidyl monomers to cyclic polyethers with B(C6F5)3. Polym. Chem. 5, 6905–6908 (2014).

    Article  CAS  Google Scholar 

  32. Guo, L., Lahasky, S. H., Ghale, K. & Zhang, D. N-Heterocyclic carbene-mediated zwitterionic polymerization of N-substituted N-Carboxyanhydrides toward poly(α-peptoid)s: kinetic, mechanism, and architectural control. J. Am. Chem. Soc. 134, 9163–9171 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Zhang, Y., Miyake, G. M. & Chen, E. Y.-X. Alane-based classical and frustrated Lewis pairs in polymer synthesis: rapid polymerization of MMA and naturally renewable methylene butyrolactones into high-molecular-weight polymers. Angew. Chem. Int. Ed. 49, 10158–10162 (2010).

    Article  CAS  Google Scholar 

  34. McGraw, M. L. & Chen, E. Y.-X. Lewis pair polymerization: perspective on a ten-year journey. Macromolecules 53, 6102–6122 (2020).

    Article  CAS  Google Scholar 

  35. Hong, M., Chen, J. & Chen, E. Y.-X. Polymerization of polar monomers mediated by main-group Lewis acid–base pairs. Chem. Rev. 118, 10551–10616 (2018).

    Article  CAS  PubMed  Google Scholar 

  36. Chen, E. Y.-X. Polymerization by classical and frustrated Lewis pairs. Top. Curr. Chem. 334, 239–260 (2012).

    Article  Google Scholar 

  37. Wan, Y., He, J., Zhang, Y. & Chen, E. Y.-X. One-step synthesis of lignin-based triblock copolymers as high-temperature and UV-blocking thermoplastic elastomers. Angew. Chem. Int. Ed. (2022). https://doi.org/10.1002/anie.202114946

  38. Stephan, D. W. Frustrated Lewis pairs: from concept to catalysis. Acc. Chem. Res. 48, 306–316 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Stephan, D. W. & Erker, G. Frustrated Lewis pair chemistry: development and perspectives. Angew. Chem. Int. Ed. 54, 6400–6441 (2015).

    Article  CAS  Google Scholar 

  40. Stephan, D. W. The broadening reach of frustrated Lewis pair chemistry. Science 354, aaf7229 (2016).

    Article  PubMed  Google Scholar 

  41. Kehr, G. & Erker, G. Frustrated Lewis pair chemistry: searching for new reactions. Chem. Rec. 17, 803–815 (2017).

    Article  CAS  PubMed  Google Scholar 

  42. Jupp, A. R. & Stephan, D. W. New directions for frustrated Lewis pair chemistry. Trends Chem. 1, 35–48 (2019).

    Article  CAS  Google Scholar 

  43. Zhao, W., He, J. & Zhang, Y. Lewis pairs polymerization of polar vinyl monomers. Sci. Bull. 64, 1830–1840 (2019).

    Article  CAS  Google Scholar 

  44. Wang, Q. et al. Living polymerization of conjugated polar alkenes catalyzed by N-heterocyclic olefin-based frustrated Lewis pairs. ACS Catal. 8, 3571–3578 (2018).

    Article  CAS  Google Scholar 

  45. Wang, H., Wang, Q., He, J. & Zhang, Y. Living polymerization of acrylamides catalysed by N-heterocyclic olefin-based Lewis pairs. Polym. Chem. 10, 3597–3603 (2019).

    Article  CAS  Google Scholar 

  46. Zhang, P., Zhou, H. & Lu, X.-B. Living and chemoselective (co)polymerization of polar divinyl monomers mediated by bulky Lewis pairs. Macromolecules 52, 4520–4525 (2019).

    Article  CAS  Google Scholar 

  47. Bai, Y., He, J. & Zhang, Y. Ultra-high-molecular-weight polymers produced by the immortal phosphine-based catalyst system. Angew. Chem. Int. Ed. 57, 17230–17234 (2018).

    Article  CAS  Google Scholar 

  48. Wang, Q., Zhao, W., He, J., Zhang, Y. & Chen, E. Y.-X. Living ring-opening polymerization of lactones by N-heterocyclic olefin/Al(C6F5)3 Lewis pairs: structures of intermediates, kinetics, and mechanism. Macromolecules 50, 123–136 (2017).

    Article  CAS  Google Scholar 

  49. Zhang, H., Nie, Y., Zhi, X., Du, H. & Yang, J. Controlled ring-opening polymerization of α-amino acid N-carboxy-anhydride by frustrated amine/borane Lewis pairs. Chem. Commun. 53, 5155–5158 (2017).

    Article  CAS  Google Scholar 

  50. Naumann, S., Scholten, P. B., Wilson, J. A. & Dove, A. P. Dual catalysis for selective ring-opening polymerization of lactones: evolution toward simplicity. J. Am. Chem. Soc. 137, 14439–14445 (2015).

    Article  CAS  PubMed  Google Scholar 

  51. Ji, H.-Y., Wang, B., Pan, L. & Li, Y.-S. Lewis pairs for ring-opening alternating copolymerization of cyclic anhydrides and epoxides. Green Chem. 20, 641–648 (2018).

    Article  CAS  Google Scholar 

  52. Yang, J.-L., Wu, H.-L., Li, Y., Zhang, X.-H. & Darensbourg, D. J. Perfectly alternating and regioselective copolymerization of carbonyl sulfide and epoxides by metal-free Lewis pairs. Angew. Chem. Int. Ed. 56, 5774–5779 (2017).

    Article  CAS  Google Scholar 

  53. Zhang, D., Boopathi, S. K., Hadjichristidis, N., Gnanou, Y. & Feng, X. Metal-free alternating copolymerization of CO2 with epoxides: fulfilling “green” synthesis and activity. J. Am. Chem. Soc. 138, 11117–11120 (2016).

    Article  CAS  PubMed  Google Scholar 

  54. Zhang, J., Wang, L., Liu, S., Kang, X. & Li, Z. A Lewis pair as organocatalyst for one-pot synthesis of block copolymers from a mixture of epoxide, anhydride, and CO2. Macromolecules 54, 763–772 (2021).

    Article  CAS  Google Scholar 

  55. Wang, Y. et al. Highly selective and productive synthesis of a carbon dioxide-based copolymer upon zwitterionic growth. Macromolecules 54, 2178–2186 (2021).

    Article  CAS  Google Scholar 

  56. Liu, S. et al. Biased Lewis pairs: a general catalytic approach to ether-ester block copolymers with unlimited ordering of sequences. Angew. Chem. Int. Ed. 58, 15478–15487 (2019).

    Article  CAS  Google Scholar 

  57. Bai, Y., Wang, H., He, J. & Zhang, Y. Rapid and scalable access to sequence‐controlled DHDM multiblock copolymers by FLP polymerization. Angew. Chem. Int. Ed. 59, 11613–11619 (2020).

    Article  CAS  Google Scholar 

  58. McGraw, M. L., Clarke, R. W. & Chen, E. Y.-X. Compounded sequence control in polymerization of one-pot mixtures of highly reactive acrylates by differentiating Lewis pairs. J. Am. Chem. Soc. 142, 5969–5973 (2020).

    Article  PubMed  Google Scholar 

  59. McGraw, M. L., Clarke, R. W. & Chen, E. Y.-X. Synchronous control of chain length/sequence/topology for precision synthesis of cyclic block copolymers from monomer mixtures. J. Am. Chem. Soc. 143, 3318–3322 (2021).

    Article  CAS  PubMed  Google Scholar 

  60. Hosoi, Y., Takasu, A., Matsuoka, S. & Hayashi, M. N-Heterocyclic carbene initiated anionic polymerization of (E,E)-methyl sorbate and subsequent ring-closing to cyclic poly(alkyl sorbate). J. Am. Chem. Soc. 139, 15005–15012 (2017).

    Article  CAS  PubMed  Google Scholar 

  61. Oga, Y., Hosoi, Y. & Takasu, A. Synthesis of cyclic poly(methyl methacrylate) via N-heterocyclic carbene (NHC) initiated-anionic polymerization and subsequent ring-closing without need of highly dilute conditions. Polymer 186, 122019 (2020).

    Article  CAS  Google Scholar 

  62. Wang, B., Pan, L., Ma, Z. & Li, Y. Ring-opening polymerization with Lewis pairs and subsequent nucleophilic substitution: a promising strategy to well-defined polyethylene-like polyesters without transesterification. Macromolecules 51, 836–845 (2018).

    Article  CAS  Google Scholar 

  63. Wang, L.-Y. et al. Intramolecularly cooperative catalysis for copolymerization of cyclic thioanhydrides and epoxides: a dual activation strategy to well-defined polythioesters. ACS Catal. 10, 6635–6644 (2020).

    Article  CAS  Google Scholar 

  64. Yang, G.-W., Zhang, Y.-Y., Xie, R. & Wu, G.-P. Scalable bifunctional organoboron catalysts for copolymerization of CO2 and epoxides with unprecedented efficiency. J. Am. Chem. Soc. 142, 12245–12255 (2020).

    Article  CAS  PubMed  Google Scholar 

  65. Yang, G.-W., Zhang, Y.-Y., Xie, R. & Wu, G.-P. High-activity organocatalysts for polyether synthesis via intramolecular ammonium cation assisted SN2 ring-opening polymerization. Angew. Chem. Int. Ed. 59, 16910–16917 (2020).

    Article  CAS  Google Scholar 

  66. Yang, G.-W. et al. Pinwheel-shaped tetranuclear organoboron catalysts for perfectly alternating copolymerization of CO2 and epichlorohydrin. J. Am. Chem. Soc. 143, 3455–3465 (2021).

    Article  CAS  PubMed  Google Scholar 

  67. Wang, L. et al. Cooperative carbon monoxide to formyl reduction at a trifunctional PBB frustrated Lewis pair. Chem. Commun. 53, 5499–5502 (2017).

    Article  CAS  Google Scholar 

  68. Wang, L. et al. Formation of macrocyclic ring systems by carbonylation of trifunctional P/B/B frustrated Lewis pairs. Chem. Sci. 9, 1544–1550 (2018).

    Article  CAS  PubMed  Google Scholar 

  69. Zhang, Y. et al. Lewis pair polymerization by classical and frustrated Lewis pairs: acid, base and monomer scope and polymerization mechanism. Dalton Trans. 41, 9119–9134 (2012).

    Article  CAS  PubMed  Google Scholar 

  70. Gowda, R. R. & Chen, E. Y.-X. Sustainable Polymers from Biomass-Derived α-Methylene-γ-Butyrolactones. in Mark, H. F. Ed. Encyclopedia of Polymer Science and Technology, 4th Ed, Vol. 8, pp. 235–271; Wiley, Hoboken, 2014.

  71. Agarwal, S., Jin, Q. & Maji, S. Biobased polymers from plant-derived Tulipalin A. ACS Symp. Ser. 1105, 197–212 (2012).

    Article  CAS  Google Scholar 

  72. Bai, Y., Wang, H., He, J., Zhang, Y. & Chen, E. Y.-X. Dual-initiating and living frustrated Lewis pairs: expeditious synthesis of biobased thermoplastic elastomers. Nat. Commun. 12, 4874 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Gilsdorf, R. A., Nicki, M. A. & Chen, E. Y.-X. High chemical recyclability of vinyl lactone acrylic bioplastics. Polym. Chem. 11, 4942–4950 (2020).

    Article  CAS  Google Scholar 

  74. He, J. et al. Chain propagation and termination mechanisms for polymerization of conjugated polar alkenes by [Al]-based frustrated Lewis pairs. Macromolecules 47, 7765–7774 (2014).

    Article  CAS  Google Scholar 

  75. Xu, P. & Xu, X. Homoleptic rare-earth aryloxide based Lewis pairs for polymerization of conjugated polar alkenes. ACS Catal. 8, 198–202 (2018).

    Article  CAS  Google Scholar 

  76. Kaminsky, W. & Franck, J. Monomer recovery by pyrolysis of poly(methyl methacrylate) (PMMA). J. Anal. Appl. Pyrolysis 19, 311–318 (1991).

    Article  CAS  Google Scholar 

  77. Kuprat, M., Lehmann, M., Schulz, A. & Villinger, A. Synthesis of pentafluorophenyl silver by means of Lewis acid catalysis: structure of silver solvent complexes. Organometallics 29, 1421–1427 (2010).

    Article  CAS  Google Scholar 

  78. Parks, D. J., Piers, W. E. & Yap, G. P. A. Synthesis, properties, and hydroboration activity of the highly electrophilic borane bis(pentafluorophenyl)borane, HB(C6F5)2. Organometallics 17, 5492–5503 (1998).

    Article  CAS  Google Scholar 

  79. Sudhakar, G., Satish, K. & Raghavaiah, J. Total synthesis and absolute configuration of curvularides A–E. J. Org. Chem. 77, 10010–10020 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant nos. 22071077 and 21871107) to Y.Z. and the US National Science Foundation (NSF-1904962) to E.Y.-X.C. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Y.Z. and Y.S. conceived the idea and designed the experiments. Y.S. and R.A.G performed the experiments and characterizations. Y.S., J.H., Y.Z. and E.Y.-X.C. analysed the data, wrote parts of the manuscript and provided input. Y.Z. directed the project.

Corresponding author

Correspondence to Yuetao Zhang.

Ethics declarations

Competing interests

Y.Z., Y.S. and J.H. are named inventors on a Chinese patent application (number 202111184369.9) submitted by Jilin University that covers the preparation and characterization of cyclic PMMBL. The other authors (R.A.G. and E. Y.-X.C.) declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Kai Guo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods 1–5, Figs. 1–46 and Tables 1 and 2.

Supplementary Video 1

Mass spectra collected from the degradation of l-PMMBL scanned from 30 to 623 °C at 10 °C min−1, m/z from 1 to 130 amu, showing evolution of ion reflux. Source data for Supplementary Fig. 37.

Supplementary Video 2

Mass spectra collected from the degradation of c-PMMBL scanned from 30 °C to 623 °C at 10 °C min−1, m/z from 1 to 130 amu, showing evolution of ion reflux. Source data for Supplementary Fig. 40.

Supplementary Video 3

Mass spectra collected from the degradation of l-PMMBL scanned during isothermal treatment at 300 °C for 60 min, m/z from 1 to 130 amu, showing evolution of ion reflux. Snapshot shown in Supplementary Fig. 42.

Supplementary Video 4

Mass spectra collected from the degradation of c-PMMBL scanned during isothermal treatment at 300 °C for 60 min, m/z from 1 to 130 amu, showing evolution of ion reflux. Snapshot shown in Supplementary Fig. 44.

Supplementary Data 1

Crystal data and structure refinement, and bond lengths and angles for compound 1A; CCDC reference 2111456.

Supplementary Data 2

Crystallographic data for compound 1A; CCDC reference 2111456.

Supplementary Data 3

Structure factor file for compound 1A; CCDC reference 2111456.

Supplementary Data 4

Crystal data and structure refinement, and bond lengths and angles for compound 2; CCDC reference 2111528.

Supplementary Data 5

Crystallographic data for compound 2; CCDC reference 2111528.

Supplementary Data 6

Structure factor file for compound 2; CCDC reference 2111528.

Supplementary Data 7

Supplementary statistical source data for the polymerization kinetics of Supplementary Fig. 24.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 6

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Y., He, J., Zhang, Y. et al. Recyclable cyclic bio-based acrylic polymer via pairwise monomer enchainment by a trifunctional Lewis pair. Nat. Chem. 15, 366–376 (2023). https://doi.org/10.1038/s41557-022-01097-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-022-01097-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing