Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Iterative synthesis of 1,3-polyboronic esters with high stereocontrol and application to the synthesis of bahamaolide A

Abstract

Polyketide natural products often contain common repeat motifs, for example, propionate, acetate and deoxypropionate, and so can be synthesized by iterative processes. We report here a highly efficient iterative strategy for the synthesis of polyacetates based on boronic ester homologation that does not require functional group manipulation between iterations. This process involves sequential asymmetric diboration of a terminal alkene, forming a 1,2-bis(boronic ester), followed by regio- and stereoselective homologation of the primary boronic ester with a butenyl metallated carbenoid to generate a 1,3-bis(boronic ester). Each transformation independently controls the stereochemical configuration, making the process highly versatile, and the sequence can be iterated prior to stereospecific oxidation of the 1,3-polyboronic ester to yield the 1,3-polyol. This methodology has been applied to a 14-step synthesis of the oxopolyene macrolide bahamaolide A, and the versatility of the 1,3-polyboronic esters has been demonstrated in various stereospecific transformations, leading to polyalkenes, -alkynes, -ketones and -aromatics with full stereocontrol.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Iterative approaches to the stereocontrolled synthesis of polyacetates.
Fig. 2: Iterative synthesis of all eight diastereomers of a tetraboronic ester.
Fig. 3: Retrosynthetic analysis of bahamaolide A.
Fig. 4: Preparation of octaboronic ester 21 and the enantiopure chiral carbenoid precursors for its homologation.
Fig. 5: Completion of the total synthesis of bahamaolide A from octaboronic ester 21.
Fig. 6: Synthesis and functionalization of polyboronic esters.

Similar content being viewed by others

Data availability

The data supporting the findings of this work are provided in the Supplementary Information. The crystallographic data for the structure of boronic ester 25 reported in this Article have been deposited at the Cambridge Crystallographic Data Centre, under deposition number CCDC 2150709. Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/.

References

  1. Newman, D. J. & Cragg, G. M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod. 79, 629–661 (2016).

    Article  CAS  Google Scholar 

  2. Staunton, J. & Weissman, K. J. Polyketide biosynthesis: a millennium review. Nat. Prod. Rep. 18, 380–416 (2001).

    Article  CAS  Google Scholar 

  3. Helfrich, E. J. N. & Piel, J. Biosynthesis of polyketides by trans-AT polyketide synthases. Nat. Prod. Rep. 33, 231–316 (2016).

    Article  CAS  Google Scholar 

  4. Hwang, S., Lee, N., Cho, S., Palsson, B. & Cho, B.-K. Repurposing modular polyketide synthases and non-ribosomal peptide synthetases for novel chemical biosynthesis. Front. Mol. Biosci. 87 (2020).

  5. Ma, L. et al. Assembly Line and Post-PKS Modifications in the Biosynthesis of Marine Polyketide Natural Products. in Liu,H.-W. & Begley, T. P. (eds.) Comprehensive Natural Products III 139–197 (Elsevier, 2020).

  6. Zheng, K., Xie, C. & Hong, R. Bioinspired iterative synthesis of polyketides. Front. Chem. 3, 32 (2015).

    Article  Google Scholar 

  7. Lehmann, J. W., Blair, D. J. & Burke, M. D. Towards the generalized iterative synthesis of small molecules. Nat. Rev. Chem. 2, 115 (2018).

    Article  Google Scholar 

  8. ter Horst, B., Feringa, B. L. & Minnaard, A. J. Iterative strategies for the synthesis of deoxypropionates. Chem. Commun. 46, 2535–2547 (2010).

    Article  Google Scholar 

  9. García-Fortanet, J., Murga, J., Carda, M. & Marco, J. A. On the structure of passifloricin A: asymmetric synthesis of the δ-lactones of (2Z,5S,7R,9S,11S)- and (2Z,5R,7R,9S,11S)-tetrahydroxyhexacos-2-enoic acid. Org. Lett. 5, 1447–1449 (2003).

    Article  Google Scholar 

  10. Zhang, Y., Arpin, C. C., Cullen, A. J., Mitton-Fry, M. J. & Sammakia, T. Total synthesis of dermostatin A. J. Org. Chem. 76, 7641–7653 (2011).

    Article  CAS  Google Scholar 

  11. Kim, I. S., Ngai, M.-Y. & Krische, M. J. Enantioselective iridium-catalyzed carbonyl allylation from the alcohol or aldehyde oxidation level using allyl acetate as an allyl metal surrogate. J. Am. Chem. Soc. 130, 6340–6341 (2008).

    Article  CAS  Google Scholar 

  12. Han, S. B., Hassan, A., Kim, I. S. & Krische, M. J. Total synthesis of (+)-roxaticin via C–C bond forming transfer hydrogenation: a departure from stoichiometric chiral reagents, auxiliaries, and premetalated nucleophiles in polyketide construction. J. Am. Chem. Soc. 132, 15559–15561 (2010).

    Article  CAS  Google Scholar 

  13. Feng, J., Kasun, Z. A. & Krische, M. J. Enantioselective alcohol C−H functionalization for polyketide construction: unlocking redox-economy and site-selectivity for ideal chemical synthesis. J. Am. Chem. Soc. 138, 5467–5478 (2016).

    Article  CAS  Google Scholar 

  14. Romea, P. & Urpí, F. in Modern Methods in Stereoselective Aldol Reactions (ed. Mahrwald, R.) 1–81 (Wiley, 2013).

  15. Carreira, E. M., Singer, R. A. & Lee, W. Catalytic, enantioselective aldol additions with methyl and ethyl acetate O-silyl enolates: a chiral tridentate chelate as a ligand for titanium(IV). J. Am. Chem. Soc. 116, 8837–8838 (1994).

    Article  CAS  Google Scholar 

  16. Kim, Y., Singer, R. A. & Carreira, E. M. Total synthesis of macrolactin A with versatile catalytic, enantioselective dienolate aldol addition reactions. Angew. Chem. Int. Ed. 37, 1261–1263 (1998).

    Article  CAS  Google Scholar 

  17. Evans, D. A. & Connell, B. T. Synthesis of the antifungal macrolide antibiotic (+)-roxaticin. J. Am. Chem. Soc. 125, 10899–10905 (2003).

    Article  CAS  Google Scholar 

  18. Dias, L. C., Kuroishi, P. K. & De Lucca, E. C. The total synthesis of (−)-cryptocaryol A. Org. Biomol. Chem. 13, 3575–3584 (2015).

    Article  CAS  Google Scholar 

  19. Rychnovsky, S. D. & Hoye, R. C. Convergent synthesis of the polyene macrolide (−)-roxaticin. J. Am. Chem. Soc. 116, 1753–1765 (1994).

    Article  CAS  Google Scholar 

  20. Richardson, T. I. & Rychnovsky, S. D. Total synthesis of filipin III. J. Am. Chem. Soc. 119, 12360–12361 (1997).

    Article  CAS  Google Scholar 

  21. Deng, Y. & Smith, A. B. III Evolution of anion relay chemistry: construction of architecturally complex natural products. Acc. Chem. Res. 53, 988–1000 (2020).

    Article  CAS  Google Scholar 

  22. Leonori, D. & Aggarwal, V. K. Lithiation−borylation methodology and its application in synthesis. Acc. Chem. Res. 47, 3174–3183 (2014).

    Article  CAS  Google Scholar 

  23. Burns, M. et al. Assembly-line synthesis of organic molecules with tailored shapes. Nature 513, 183–188 (2014).

    Article  CAS  Google Scholar 

  24. Balieu, S. et al. Toward ideality: the synthesis of (+)-kalkitoxin and (+)-hydroxyphthioceranic acid by assembly-line synthesis. J. Am. Chem. Soc. 137, 4398–4403 (2015).

    Article  CAS  Google Scholar 

  25. Bootwicha, T., Feilner, J. M., Myers, E. L. & Aggarwal, V. K. Iterative assembly line synthesis of polypropionates with full stereocontrol. Nat. Chem. 9, 896–902 (2017).

    Article  CAS  Google Scholar 

  26. Wu, J. et al. Synergy of synthesis, computation and NMR reveals correct baulamycin structures. Nature 547, 436–440 (2017).

    Article  CAS  Google Scholar 

  27. Pradeilles, J. A. et al. Odd–even alternations in helical propensity of a homologous series of hydrocarbons. Nat. Chem. 12, 475–480 (2020).

    Article  CAS  Google Scholar 

  28. Yeung, K., Mykura, R. C. & Aggarwal, V. K. Lithiation–borylation methodology in the total synthesis of natural products. Nat. Synth. 1, 117–126 (2022).

    Article  Google Scholar 

  29. Coombs, J. R., Haeffner, F., Kliman, L. T. & Morken, J. P. Scope and mechanism of the Pt-catalyzed enantioselective diboration of monosubstituted alkenes. J. Am. Chem. Soc. 135, 11222–11231 (2013).

    Article  CAS  Google Scholar 

  30. Fawcett, A. et al. Regio- and stereoselective homologation of 1,2-bis(boronic esters): stereocontrolled synthesis of 1,3-diols and Sch 725674. Angew. Chem. Int. Ed. 55, 14663–14667 (2016).

    Article  CAS  Google Scholar 

  31. Casoni, G. et al. Sulfinyl benzoates as precursors to Li and Mg carbenoids for the stereoselective iterative homologation of boronic esters. J. Am. Chem. Soc. 139, 11877–11886 (2017).

    Article  CAS  Google Scholar 

  32. Kim, D. G. et al. Bahamaolides A and B, antifungal polyene polyol macrolides from the marine actinomycete Streptomyces sp. J. Nat. Prod. 75, 959–967 (2012).

    Article  CAS  Google Scholar 

  33. Lee, S.-H. et al. Bahamaolide A from the marine-derived Streptomyces sp. CNQ343 inhibits isocitrate lyase in Candida albicans. Bioorg. Med. Chem. Lett. 24, 4291–4293 (2014).

    Article  CAS  Google Scholar 

  34. Mori, Y., Asai, M., Kawade, J. & Furukawa, H. Total synthesis of the polyene macrolide antibiotic roxaticin. II. Total synthesis of roxaticin. Tetrahedron 51, 5315–5330 (1995).

    Article  CAS  Google Scholar 

  35. Hertweck, C. The biosynthetic logic of polyketide diversity. Angew. Chem. Int. Ed. 48, 4688–4716 (2009).

    Article  CAS  Google Scholar 

  36. Sandford, C. & Aggarwal, V. K. Stereospecific functionalizations and transformations of secondary and tertiary boronic esters. Chem. Commun. 53, 5481–5494 (2017).

    Article  CAS  Google Scholar 

  37. Renaudet, O. & Roy, R. Multivalent scaffolds in glycoscience: an overview. Chem. Soc. Rev. 42, 4515–4517 (2013).

    Article  CAS  Google Scholar 

  38. Guan, X., Chen, F., Fang, Q. & Qiu, S. Design and applications of three dimensional covalent organic frameworks. Chem. Soc. Rev. 49, 1357–1384 (2020).

    Article  CAS  Google Scholar 

  39. Stadtmueller, M. N. et al. Evaluation of multivalent sialylated polyglycerols for resistance induction in and broad antiviral activity against influenza A viruses. J. Med. Chem. 64, 12774–12789 (2021).

    Article  CAS  Google Scholar 

  40. Bhatia, S., Dimde, M. & Haag, R. Multivalent glycoconjugates as vaccines and potential drug candidates. MedChemComm 5, 862–878 (2014).

    Article  CAS  Google Scholar 

  41. Mammen, M., Choi, S.-K. & Whitesides, G. M. Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew. Chem. Int. Ed. 37, 2754–2794 (1998).

    Article  Google Scholar 

  42. Bhatia, S. et al. Linear polysialoside outperforms dendritic analogs for inhibition of influenza virus infection in vitro and in vivo. Biomaterials 138, 22–34 (2017).

    Article  CAS  Google Scholar 

  43. Vonnemann, J. et al. Size dependence of steric shielding and multivalency effects for globular binding inhibitors. J. Am. Chem. Soc. 137, 2572–2579 (2015).

    Article  CAS  Google Scholar 

  44. Zweifel, G., Arzoumanian, H. & Whitney, C. C. A convenient stereoselective synthesis of substituted alkenes via hydroboration–iodination of alkynes. J. Am. Chem. Soc. 89, 3652–3653 (1967).

    Article  CAS  Google Scholar 

  45. Armstrong, R. J. & Aggarwal, V. K. 50 years of Zweifel olefination: a transition-metal-free coupling. Synthesis (Stuttg.) 49, 3323–3336 (2017).

    Article  CAS  Google Scholar 

  46. Wang, Y., Noble, A., Myers, L. & Aggarwal, V. K. Enantiospecific alkynylation of alkylboronic esters. Angew. Chem. Int. Ed. 55, 4270–4274 (2016).

    Article  CAS  Google Scholar 

  47. Mukherjee, C., Mäkinen, K., Savolainen, J. & Leino, R. Chemistry and biology of oligovalent β-(1→2)-linked oligomannosides: new insights into carbohydrate-based adjuvants in immunotherapy. Chem. Eur. J. 19, 7961–7974 (2013).

    Article  CAS  Google Scholar 

  48. Geng, Z., Shin, J. J., Xi, Y. & Hawker, C. J. Click chemistry strategies for the accelerated synthesis of functional macromolecules. J. Polym. Sci. 59, 963–1042 (2021).

    Article  CAS  Google Scholar 

  49. Bonet, A., Odachowski, M., Leonori, D., Essafi, S. & Aggarwal, V. K. Enantiospecific sp2sp3 coupling of secondary and tertiary boronic esters. Nat. Chem. 6, 584–589 (2014).

    Article  CAS  Google Scholar 

  50. Coates, G. W. & Grubbs, R. Quantitative ring-closing metathesis of polyolefins. J. Am. Chem. Soc. 118, 229–230 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H2020 ERC (no. 670668, V.K.A.) for financial support. H.-H.L. and T.B thank the Marie Skłodowska-Curie Fellowship programme for support (Horizon 2020, no. 746045 (H.-H.L.) and no. 626828 (T.B.)). We thank N. Pridmore and H. Sparkes for X-ray analysis, D. J. Blair for useful discussions and C. P. Butts for assistance with NMR analysis.

Author information

Authors and Affiliations

Authors

Contributions

S.G.A., J.M.B. and H.-H.L. contributed equally to this work. S.G.A., J.M.B., H.-H.L, A.F. and T.B. conducted the experimental work and analysed the data. All authors contributed to the preparation of the manuscript.

Corresponding author

Correspondence to Varinder K. Aggarwal.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Experimental procedures and characterization for all compounds synthesized in this work, Supplementary discussion, Supplementary Figs. 1–4, Supplementary Schemes 1–13 and Supplementary Tables 1–10.

Supplementary Data

Crystallographic data for compound 25: CCDC 2150709.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aiken, S.G., Bateman, J.M., Liao, HH. et al. Iterative synthesis of 1,3-polyboronic esters with high stereocontrol and application to the synthesis of bahamaolide A. Nat. Chem. 15, 248–256 (2023). https://doi.org/10.1038/s41557-022-01087-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-022-01087-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing