Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A circular polyester platform based on simple gem-disubstituted valerolactones

Abstract

Geminal disubstitution of cyclic monomers is an effective strategy to enhance the chemical recyclability of their polymers, but it is utilized for that purpose alone and often at the expense of performance properties. Here we present synergistic use of gem-α,α-disubstitution of available at-scale, bio-based δ-valerolactones to yield gem-dialkyl-substituted valerolactones (\({\rm{VL}}^{{\rm{R}}_{2}}\)), which generate polymers that solve not only the poor chemical recyclability but also the low melting temperature and mechanical performance of the parent poly(δ-valerolactone); the gem-disubstituted polyesters (\({\rm{PVL}}^{{\rm{R}}_{2}}\)) therefore not only exhibit complete chemical recyclability but also thermal, mechanical and transport properties that rival or exceed those of polyethylene. Through a fundamental structure–property study that reveals intriguing impacts of the alkyl chain length on materials performance of \({\rm{PVL}}^{{\rm{R}}_{2}}\), this work establishes a simple circular, high-performance polyester platform based on \({\rm{VL}}^{{\rm{R}}_{2}}\) and highlights the importance of synergistic utilization of gem-disubstitution for enhancing both chemical recyclability and materials performance of sustainable polyesters.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Circular polyethylene-like polyester platform based on α,α-disubstituted valerolactones.
Fig. 2: Living characteristics for ROP of \({\rm{VL}}^{{\rm{Pr}}_{2}}\).
Fig. 3: Representative thermal properties of P\({\rm{VL}}^{{\rm{R}}_{2}}\).
Fig. 4: Mechanical properties of representative P\({\rm{VL}}^{{\rm{R}}_{2}}\).
Fig. 5: Transport properties of representative P\({\rm{VL}}^{{\rm{R}}_{2}}\).
Fig. 6: Chemical recyclability of \({\rm{PVL}}^{{\rm{Pr}}_{2}}\) as shown by 1H NMR spectra (CDCl3).

Similar content being viewed by others

Data availability

All of the data necessary to support the conclusions of this paper are provided in the paper and its Supplementary Information.

References

  1. Shi, C. et al. Design principles for intrinsically circular polymers with tunable properties. Chem 7, 2896–2912 (2021).

    Article  CAS  Google Scholar 

  2. Jambeck, J. R. et al. Plastic waste inputs from land into the ocean. Science 347, 768–771 (2015).

    Article  CAS  Google Scholar 

  3. Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 3, e1700782 (2017).

    Article  Google Scholar 

  4. The New Plastics Economy: Rethinking the Future of Plastics (World Economic forum, Ellen MacArthur Foundation, McKinsey and Company, 2016); www.ellenmacarthurfoundation.org/publications/the-new-plasticseconomy-rethinking-the-future-of-plastics

  5. Borrelle, S. B. et al. Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science 369, 1515–1518 (2020).

    Article  CAS  Google Scholar 

  6. Coates, G. W. & Getzler, Y. D. Y. L. Chemical recycling to monomer for an ideal, circular polymer economy. Nat. Rev. Mater. 5, 501–516 (2020).

    Article  CAS  Google Scholar 

  7. Worch, J. C. & Dove, A. P. 100th anniversary of macromolecular science viewpoint: toward catalytic chemical recycling of waste (and future) plastics. ACS Macro Lett. 9, 1494–1506 (2020).

    Article  CAS  Google Scholar 

  8. Kumar, A. et al. Hydrogenative depolymerization of nylons. J. Am. Chem. Soc. 142, 14267–14275 (2020).

    Article  CAS  Google Scholar 

  9. Zhang, F. et al. Polyethylene upcycling to long-chain alkylaromaticsby tandem hydrogenolysis/aromatization. Science 370, 437–441 (2020).

    Article  CAS  Google Scholar 

  10. Jehanno, C., Pérez-Madrigal, M. M., Demarteau, J., Sardon, H. & Dove, A. P. Organocatalysis for depolymerisation. Polym. Chem. 10, 172–186 (2019).

    Article  CAS  Google Scholar 

  11. Fagnani, D. E. et al. 100th anniversary of macromolecular science viewpoint: redefining sustainable polymers. ACS Macro Lett. 10, 41–53 (2020).

    Article  Google Scholar 

  12. Lau, W. W. Y. et al. Evaluating scenarios toward zero plastic pollution. Science 369, 1455–1461 (2020).

    Article  CAS  Google Scholar 

  13. Lu, X.-B., Liu, Y. & Zhou, H. Learning nature: recyclable monomers and polymers. Chem. Eur. J. 24, 11255–11266 (2018).

    Article  CAS  Google Scholar 

  14. Rahimi, A. & García, J. M. Chemical recycling of waste plastics for new materials production. Nat. Rev. Chem. 1, 0046 (2017).

    Article  Google Scholar 

  15. Kaitz, J. A., Lee, O. P. & Moore, J. S. Depolymerizable polymers: preparation, applications, and future outlook. MRS Commun. 5, 191–204 (2015).

    Article  CAS  Google Scholar 

  16. Hong, M. & Chen, E. Y. X. Chemically recyclable polymers: a circular economy approach to sustainability. Green Chem. 19, 3692–3706 (2017).

    Article  CAS  Google Scholar 

  17. Hong, M. & Chen, E. Y. X. Future directions for sustainable polymers. Trends Chem. 1, 148–151 (2019).

    Article  CAS  Google Scholar 

  18. Tang, X. & Chen, E. Y. X. Toward infinitely recyclable plastics derived from renewable cyclic esters. Chem 5, 284–312 (2019).

    Article  CAS  Google Scholar 

  19. Zhang, X., Fevre, M., Jones, G. O. & Waymouth, R. M. Catalysis as an enabling science for sustainable polymers. Chem. Rev. 118, 839–885 (2018).

    Article  CAS  Google Scholar 

  20. Schneiderman, D. K. & Hillmyer, M. A. 50th anniversary perspective: there is a great future in sustainable polymers. Macromolecules 50, 3733–3749 (2017).

    Article  CAS  Google Scholar 

  21. Nishida, H. et al. Poly(tetramethyl glycolide) from renewable carbon, a racemization-free and controlled depolymerizable polyester. Macromolecules 44, 12–13 (2011).

    Article  CAS  Google Scholar 

  22. Fahnhorst, G. W., Hoe, G. X. D., Hillmyer, M. A. & Hoye, T. R. 4-Carboalkoxylated polyvalerolactones from malic acid: tough and degradable polyesters. Macromolecules 53, 3194–3201 (2020).

    Article  CAS  Google Scholar 

  23. Fahnhorst, G. W. & Hoye, T. R. A. Carbomethoxylated polyvalerolactone from malic acid: synthesis and divergent chemical recycling. ACS Macro Lett. 7, 143–147 (2018).

    Article  CAS  Google Scholar 

  24. Cederholm, L., Olsén, P., Hakkarainen, M. & Odelius, K. Turning natural δ-lactones to thermodynamically stable polymers with triggered recyclability. Polym. Chem. 11, 4883–4894 (2020).

    Article  CAS  Google Scholar 

  25. MacDonald, J. P. & Shaver, M. P. An aromatic/aliphatic polyester prepared via ring-opening polymerisation and its remarkably selective and cyclable depolymerisation to monomer. Polym. Chem. 7, 553–559 (2016).

    Article  CAS  Google Scholar 

  26. Hong, M. & Chen, E. Y.-X. Completely recyclable biopolymers with linear and cyclic topologies via ring-opening polymerization of γ-butyrolactone. Nat. Chem. 8, 42–49 (2016).

    Article  CAS  Google Scholar 

  27. Hong, M. & Chen, E. Y.-X. Towards truly sustainable polymers: a metal-free recyclable polyester from biorenewable non-strained γ-butyrolactone. Angew. Chem. Int. Ed. 55, 4188–4193 (2016).

    Article  CAS  Google Scholar 

  28. Zhu, J.-B., Watson, E. M., Tang, J. & Chen, E. Y.-X. A synthetic polymer system with repeatable chemical recyclability. Science 360, 398–403 (2018).

    Article  CAS  Google Scholar 

  29. Zhu, J. B. & Chen, E. Y.-X. Catalyst-sidearm-induced stereoselectivity switching in polymerization of a racemic lactone for stereocomplexed crystalline polymer with a circular life cycle. Angew. Chem. Int. Ed. 58, 1178–1182 (2019).

    Article  CAS  Google Scholar 

  30. Cywar, R. M., Zhu, J.-B. & Chen, E. Y.-X. Selective or living organopolymerization of a six-five bicyclic lactone to produce fully recyclable polyesters. Polym. Chem. 10, 3097–3106 (2019).

    Article  CAS  Google Scholar 

  31. Sangroniz, A. et al. Packaging materials with desired mechanical and barrier properties and full chemical recyclability. Nat. Commun. 10, 3559 (2019).

    Article  Google Scholar 

  32. Xiong, W. et al. Geminal dimethyl substitution enables controlled polymerization of penicillamine-derived β-thiolactones and reversed depolymerization. Chem 6, 1831–1843 (2020).

    Article  CAS  Google Scholar 

  33. Shi, C. et al. Hybrid monomer design for unifying conflicting polymerizability, recyclability, and performance properties. Chem 7, 670–685 (2021).

    Article  CAS  Google Scholar 

  34. Shi, C. et al. High-performance pan-tactic polythioesters with intrinsic crystallinity and chemical recyclability. Sci. Adv. 6, eabc0495 (2020).

    Article  CAS  Google Scholar 

  35. Yuan, J. et al. 4-Hydroxyproline-derived sustainable polythioesters: controlled ring-opening polymerization, complete recyclability, and facile functionalization. J. Am. Chem. Soc. 141, 4928–4935 (2019).

    Article  CAS  Google Scholar 

  36. Yu, Y., Fang, L.-M., Liu, Y. & Lu, X.-B. Chemical synthesis of CO2-based polymers with enhanced thermal stability and unexpected recyclability from biosourced monomers. ACS Catal. 11, 8349–8357 (2021).

    Article  CAS  Google Scholar 

  37. Liu, Y., Zhou, H., Guo, J.-Z., Ren, W.-M. & Lu, X.-B. Completely recyclable monomers and polycarbonate: approach to sustainable polymers. Angew. Chem. Int. Ed. 56, 4862–4866 (2017).

    Article  CAS  Google Scholar 

  38. Ellis, W. C. et al. Copolymerization of CO2 and meso epoxides using enantioselective β-diiminate catalysts: a route to highly isotactic polycarbonates. Chem. Sci. 5, 4004–4011 (2014).

    Article  CAS  Google Scholar 

  39. Saxon, D. J., Gormong, E. A., Shah, V. M. & Reineke, T. M. Rapid synthesis of chemically recyclable polycarbonates from renewable feedstocks. ACS Macro Lett. 10, 98–103 (2021).

    Article  CAS  Google Scholar 

  40. Abell, B. A., Snyderl, R. L. & Coates, G. W. Chemically recyclable thermoplastics from reversible-deactivation polymerization of cyclic acetals. Science 373, 783–789 (2021).

    Article  Google Scholar 

  41. Schneiderman, D. K. et al. Chemically recyclable biobased polyurethanes. ACS Macro Lett. 5, 515–518 (2016).

    Article  CAS  Google Scholar 

  42. Lloyd, E. M. et al. Fully recyclable metastable polymers and composites. Chem. Mater. 31, 398–406 (2019).

    Article  CAS  Google Scholar 

  43. Diesendruck, C. E. et al. Mechanically triggered heterolytic unzipping of a low-ceiling-temperature polymer. Nat. Chem. 6, 623–628 (2014).

    Article  CAS  Google Scholar 

  44. Beromi, M. M. et al. Iron-catalysed synthesis and chemical recycling of telechelic 1,3-enchained oligocyclobutanes. Nat. Chem. 13, 156–162 (2021).

    Article  Google Scholar 

  45. Sathe, D. et al. Olefin metathesis-based chemically recyclable polymers enabled by fused-ring monomers. Nat. Chem. 13, 743–750 (2021).

    Article  CAS  Google Scholar 

  46. Chen, H., Shi, Z., Hsu, T.-G. & Wang, J. Overcoming the low driving force in forming depolymerizable polymers through monomer isomerization. Angew. Chem. Int. Ed. 60, 25493–25498 (2021).

    Article  CAS  Google Scholar 

  47. Jung, M. E. & Piizzi, G. Gem-disubstituent effect: theoretical basis and synthetic applications. Chem. Rev. 105, 1735–1766 (2005).

    Article  CAS  Google Scholar 

  48. Bachrach, S. M. The Gem-dimethyl effect revisited. J. Org. Chem. 73, 2466–2468 (2008).

    Article  CAS  Google Scholar 

  49. Zhou, J., Sathe, D. & Wang, J. Understanding the structure–polymerization thermodynamics relationships of fused-ring cyclooctenes for developing chemically recyclable polymers. J. Am. Chem. Soc. 144, 928–934 (2022).

    Article  CAS  Google Scholar 

  50. Save, M., Schappacher, M. & Soum, A. Controlled ring-opening polymerization of lactones and lactides initiated by lanthanum isopropoxide, 1 general aspects and kinetics. Macromol. Chem. Phys. 203, 889–899 (2002).

    Article  CAS  Google Scholar 

  51. Larrañaga, A. & Lizundia, E. A review on the thermomechanical properties and biodegradation behaviour of polyesters. Eur. Polym. J. 121, 109296 (2019).

    Article  Google Scholar 

  52. Rabnawaz, M., Wyman, I., Auras, R. & Cheng, S. A roadmap towards green packaging: the current status and future outlook for polyesters in the packaging industry. Green Chem. 19, 4737–4753 (2017).

    Article  CAS  Google Scholar 

  53. Reinišová, L. & Hermanová, S. Poly(trimethylene carbonate-co-valerolactone) copolymers are materials with tailorable properties: from soft to thermoplastic elastomers. RSC Adv. 10, 44111–44120 (2020).

    Article  Google Scholar 

  54. Schneiderman, D. K. & Hillmyer, M. A. Aliphatic polyester block polymer design. Macromolecules 49, 2419–2428 (2016).

    Article  CAS  Google Scholar 

  55. Olsén, P., Odelius, K. & Albertsson, A.-C. Thermodynamic presynthetic considerations for ring-opening polymerization. Biomacromolecules 17, 699–709 (2016).

    Article  Google Scholar 

  56. Tang, X. et al. Biodegradable polyhydroxyalkanoates by stereoselective copolymerization of racemic diolides: stereocontrol mechanism and polyolefin-like properties. Angew. Chem. Int. Ed. 59, 7881–7890 (2020).

    Article  CAS  Google Scholar 

  57. Tang, X., Westlie, A. H., Watson, E. M. & Chen, E. Y.-X. Stereosequenced crystalline polyhydroxyalkanoates from diastereomeric monomer mixtures. Science 366, 754–758 (2019).

    Article  CAS  Google Scholar 

  58. Häußler, M., Eck, M., Rothauer, D. & Mecking, S. Closed-loop recycling of polyethylene-like materials. Nature 590, 423–427 (2021).

    Article  Google Scholar 

  59. Munnuri, S. et al. Catalyst-controlled diastereoselective synthesis of cyclic amines via C–H functionalization. J. Am. Chem. Soc. 139, 18288–18294 (2017).

    CAS  Google Scholar 

  60. Du, A. & Kowalski, A. in Handbook of Ring-Opening Polymerization (eds Dubois, P., Coulembier, O. & Raquez, J.-M.) Ch. 1 (Wiley-VCH, 2009).

  61. Wang, Y. & Xu, T. Topology-controlled ring-opening polymerization of o-carboxyanhydride. Macromolecules 53, 8829–8836 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work performed at Dalian University of Technology was supported by the National Natural Science Foundation of China (grant no. 21774017) and the Fundamental Research Funds for the Central Universities (grant no. DUT20LK35). The work performed at Colorado State University was supported by RePLACE (Redesigning Polymers to Leverage A Circular Economy) funded by the Office of Science of the US Department of Energy via award no. DE-SC0022290.

Author information

Authors and Affiliations

Authors

Contributions

X.-L.L., T.-Q. X. and E.Y.-X.C. conceived the idea and designed the experiments. X.-L.L., R.W.C. and J.-Y.J. performed the experiments, and analysed and processed the data. All authors co-wrote the manuscript and participated in data analyses and discussions.

Corresponding authors

Correspondence to Tie-Qi Xu or Eugene Y.-X. Chen.

Ethics declarations

Competing interests

T.X. and X.L. are named inventors on a Chinese patent application submitted by Dalian University of Technology that covers the polyester based on α,α-disubstituted valerolactones as well as the their preparation method and degradation. E.Y.-X.C. is a named inventor on a US patent application submitted by Colorado State University Research Foundation, which covers chemically circular semi-crystalline polyesters. The other authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Joshua Worch and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–114 and Tables 1–15.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, XL., Clarke, R.W., Jiang, JY. et al. A circular polyester platform based on simple gem-disubstituted valerolactones. Nat. Chem. 15, 278–285 (2023). https://doi.org/10.1038/s41557-022-01077-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-022-01077-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing