Abstract
Hydroxyhydrocarbon (Hhc) moieties in the backbone of peptidic natural products can exert a substantial influence on the bioactivities of the products, making Hhc units an attractive class of building blocks for de novo peptides. However, despite advances in in vitro genetic code reprogramming, the ribosomal incorporation of Hhc units remains challenging. Here we report a method for in vitro ribosomal synthesis of natural-product-like peptides bearing Hhc units. A series of azide/hydroxy acids were designed as chemical precursors of Hhc units and incorporated into the nascent peptide chain by means of genetic code reprogramming. Post-translational reduction of the azide induced an O-to-N acyl shift to rearrange the peptide backbone. This method allows for one-pot ribosomal synthesis of designer macrocycles bearing various β-, γ- and δ-type Hhc units. We also report the synthesis of a statine-containing peptidomimetic inhibitor of β-secretase 1 as a showcase example.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
Methods and data, including for the synthesis of acyl-donor substrates, characterization of acyl-donor substrates, primer sequences, DNA template assembly schemes, additional LC-MS data for the backbone-acyl shift reactions, MS/MS identification of P10–P4′statV, optimization of flexizyme-mediated acylation conditions and summary of all LC-MS chromatograms discussed in this paper are available in the Supplementary Information. Alternatively, data are available from the corresponding authors upon reasonable request.
References
Umezawa, H., Aoyagi, T., Morishima, H., Matsuzaki, M. & Hamada, M. Pepstatin, a new pepsin inhibitor produced by Actinomycetes. J. Antibiot. (Tokyo) 23, 259–262 (1970).
Nyfeler, R. & Keller-Schierlein, W. [Metabolites of microorganisms. 143. Echinocandin B, a novel polypeptide-antibiotic from Aspergillus nidulans var. echinulatus: isolation and structural components]. Helv. Chim. Acta 57, 2459–2477 (1974).
Trevisi, L. et al. Callipeltin A, a cyclic depsipeptide inhibitor of the cardiac sodium-calcium exchanger and positive inotropic agent. Biochem. Biophys. Res. Commun. 279, 219–222 (2000).
Nagano, Y. et al. Pyloricidins, novel anti-Helicobacter pylori antibiotics produced by Bacillus sp. II. Isolation and structure elucidation. J. Antibiot. (Tokyo) 54, 934–947 (2001).
Plaza, A. et al. Celebesides A-C and theopapuamides B-D, depsipeptides from an Indonesian sponge that inhibit HIV-1 entry. J. Org. Chem. 74, 504–512 (2009).
Choi, H. et al. The hoiamides, structurally intriguing neurotoxic lipopeptides from Papua New Guinea marine cyanobacteria. J. Nat. Prod. 73, 1411–1421 (2010).
Festa, C. et al. Solomonamides A and B, new anti-inflammatory peptides from Theonella swinhoei. Org. Lett. 13, 1532–1535 (2011).
Tajima, H., Wakimoto, T., Takada, K., Ise, Y. & Abe, I. Revised structure of cyclolithistide A, a cyclic depsipeptide from the marine sponge Discodermia japonica. J. Nat. Prod. 77, 154–158 (2014).
Wakimoto, T., Egami, Y. & Abe, I. Calyculin: Nature’s way of making the sponge-derived cytotoxin. Nat. Prod. Rep. 33, 751–760 (2016).
Bott, R., Subramanian, E. & Davies, D. R. Three-dimensional structure of the complex of the Rhizopus chinensis carboxyl proteinase and pepstatin at 2.5 Å resolution. Biochemistry 21, 6956–6962 (1982).
Rich, D. H. et al. Inhibition of aspartic proteases by pepstatin and 3-methylstatine derivatives of pepstatin. Evidence for collected-substrate enzyme inhibition. Biochemistry 24, 3165–3173 (1985).
Tumminello, F. M., Bernacki, R. J., Gebbia, N. & Leto, G. Pepstatins: aspartic proteinase inhibitors having potential therapeutic applications. Med. Res. Rev. 13, 199–208 (1993).
Wada, S., Matsunaga, S., Fusetani, N. & Watabe, S. Theonellamide F, a bicyclic peptide marine toxin, induces formation of vacuoles in 3Y1 rat embryonic fibroblast. Mar. Biotechnol. (N. Y.) 1, 337–341 (1999).
Okada, Y., Matsunaga, S., van Soest, R. W. & Fusetani, N. Nagahamide A, an antibacterial depsipeptide from the marine sponge Theonella swinhoei. Org. Lett. 4, 3039–3042 (2002).
Kuranaga, T. et al. Total synthesis and structural revision of kasumigamide, and identification of a new analogue. ChemBioChem 21, 3329–3332 (2020).
Sinha, S. et al. Purification and cloning of amyloid precursor protein β-secretase from human brain. Nature 402, 537–540 (1999).
Turner, R. T. 3rd et al. Subsite specificity of memapsin 2 (β-secretase): implications for inhibitor design. Biochemistry 40, 10001–10006 (2001).
Hong, L. et al. Crystal structure of memapsin 2 (β-secretase) in complex with an inhibitor OM00-3. Biochemistry 41, 10963–10967 (2002).
Radics, G., Koksch, B., El-Kousy, S. M., Spengler, J. & Burger, K. l-α-methylhomoisoserine: a new versatile building block for peptide and depsipeptide modification. Synlett 2003, 1826–1829 (2003).
Brenner, M. & Seebach, D. Synthesis and CD spectra in MeCN, MeOH and H2O of γ-oligopeptides, with hydroxy groups on the backbone—preliminary communication. Helv. Chim. Acta 84, 1181–1189 (2001).
Gessier, F., Noti, C., Rueping, M. & Seebach, D. Synthesis and CD spectra of fluoro- and hydroxy-substituted β-peptides. Helv. Chim. Acta 86, 1862–1870 (2003).
Rodriguez, F. et al. Conformational preferences of chiral acyclic homooligomeric β2,2-peptides. Curr. Top. Med. Chem. 14, 1225–1234 (2014).
Gademann, K., Hane, A., Rueping, M., Jaun, B. & Seebach, D. The fourth helical secondary structure of β-peptides: the (P)-28-helix of a β-hexapeptide consisting of (2R,3S)-3-amino-2-hydroxy acid residues. Angew. Chem. Int. Ed. 42, 1534–1537 (2003).
Dobrowolski, J. C. et al. IR low-temperature matrix, X-ray and ab initio study on l-isoserine conformations. Phys. Chem. Chem. Phys. 12, 10818–10830 (2010).
Zhang, W., Bando, T. & Sugiyama, H. Discrimination of hairpin polyamides with an α-substituted-γ-aminobutyric acid as a 5′-TG-3′ reader in DNA minor groove. J. Am. Chem. Soc. 128, 8766–8776 (2006).
Bandyopadhyay, A., Malik, A., Kumar, M. G. & Gopi, H. N. Exploring β-hydroxy γ-amino acids (statines) in the design of hybrid peptide foldamers. Org. Lett. 16, 294–297 (2014).
Malik, A., Kumar, M. G., Bandyopadhyay, A. & Gopi, H. N. Helices with additional H-bonds: crystallographic conformations of α,γ-hybrid peptides helices composed of β-hydroxy γ-amino acids (statines). Pept. Sci. 108, e22978 (2017).
Maini, R. et al. Incorporation of β-amino acids into dihydrofolate reductase by ribosomes having modifications in the peptidyltransferase center. Bioorg. Med. Chem. 21, 1088–1096 (2013).
Fujino, T., Goto, Y., Suga, H. & Murakami, H. Ribosomal synthesis of peptides with multiple β-amino acids. J. Am. Chem. Soc. 138, 1962–1969 (2016).
Melo Czekster, C., Robertson, W. E., Walker, A. S., Soll, D. & Schepartz, A. In vivo biosynthesis of a β-amino acid-containing protein. J. Am. Chem. Soc. 138, 5194–5197 (2016).
Katoh, T. & Suga, H. Ribosomal incorporation of consecutive β-amino acids. J. Am. Chem. Soc. 140, 12159–12167 (2018).
Adaligil, E., Song, A., Hallenbeck, K. K., Cunningham, C. N. & Fairbrother, W. J. Ribosomal synthesis of macrocyclic peptides with β2- and β2,3-homo-amino acids for the development of natural product-like combinatorial libraries. ACS Chem. Biol. 16, 1011–1018 (2021).
Dedkova, L. M., Fahmi, N. E., Golovine, S. Y. & Hecht, S. M. Enhanced d-amino acid incorporation into protein by modified ribosomes. J. Am. Chem. Soc. 125, 6616–6617 (2003).
Goto, Y., Murakami, H. & Suga, H. Initiating translation with d-amino acids. RNA 14, 1390–1398 (2008).
Fujino, T., Goto, Y., Suga, H. & Murakami, H. Reevaluation of the d-amino acid compatibility with the elongation event in translation. J. Am. Chem. Soc. 135, 1830–1837 (2013).
Katoh, T., Tajima, K. & Suga, H. Consecutive elongation of d-amino acids in translation. Cell Chem. Biol. 24, 46–54 (2017).
Merryman, C. & Green, R. Transformation of aminoacyl tRNAs for the in vitro selection of ‘drug-like’ molecules. Chem. Biol. 11, 575–582 (2004).
Kawakami, T., Murakami, H. & Suga, H. Messenger RNA-programmed incorporation of multiple N-methyl-amino acids into linear and cyclic peptides. Chem. Biol. 15, 32–42 (2008).
Subtelny, A. O., Hartman, M. C. & Szostak, J. W. Ribosomal synthesis of N-methyl peptides. J. Am. Chem. Soc. 130, 6131–6136 (2008).
Maini, R. et al. Ribosomal formation of thioamide bonds in polypeptide synthesis. J. Am. Chem. Soc. 141, 20004–20008 (2019).
Sando, S. et al. Unexpected preference of the E. coli translation system for the ester bond during incorporation of backbone-elongated substrates. J. Am. Chem. Soc. 129, 6180–6186 (2007).
Ohta, A., Murakami, H., Higashimura, E. & Suga, H. Synthesis of polyester by means of genetic code reprogramming. Chem. Biol. 14, 1315–1322 (2007).
Goto, Y. & Suga, H. Translation initiation with initiator tRNA charged with exotic peptides. J. Am. Chem. Soc. 131, 5040–5041 (2009).
Ad, O. et al. Translation of diverse aramid- and 1,3-dicarbonyl-peptides by wild type ribosomes in vitro. ACS Cent. Sci. 5, 1289–1294 (2019).
Lee, J. et al. Expanding the limits of the second genetic code with ribozymes. Nat. Commun. 10, 5097 (2019).
Takatsuji, R. et al. Ribosomal synthesis of backbone-cyclic peptides compatible with in vitro display. J. Am. Chem. Soc. 141, 2279–2287 (2019).
Nakajima, E., Goto, Y., Sako, Y., Murakami, H. & Suga, H. Ribosomal synthesis of peptides with C-terminal lactams, thiolactones, and alkylamides. ChemBioChem 10, 1186–1192 (2009).
Lee, J., Schwarz, K. J., Kim, D. S., Moore, J. S. & Jewett, M. C. Ribosome-mediated polymerization of long chain carbon and cyclic amino acids into peptides in vitro. Nat. Commun. 11, 4304 (2020).
Trobro, S. & Aqvist, J. Mechanism of peptide bond synthesis on the ribosome. Proc. Natl Acad. Sci. USA 102, 12395–12400 (2005).
Gindulyte, A. et al. The transition state for formation of the peptide bond in the ribosome. Proc. Natl Acad. Sci. USA 103, 13327–13332 (2006).
Voorhees, R. M., Weixlbaumer, A., Loakes, D., Kelley, A. C. & Ramakrishnan, V. Insights into substrate stabilization from snapshots of the peptidyl transferase center of the intact 70S ribosome. Nat. Struct. Mol. Biol. 16, 528–533 (2009).
Goto, Y., Katoh, T. & Suga, H. Flexizymes for genetic code reprogramming. Nat. Protoc. 6, 779–790 (2011).
Adaligil, E., Song, A., Cunningham, C. N. & Fairbrother, W. J. Ribosomal synthesis of macrocyclic peptides with linear γ4- and β-hydroxy-γ4-amino acids. ACS Chem. Biol. 16, 1325–1331 (2021).
Sohma, Y. & Kiso, Y. Synthesis of O-acyl isopeptides. Chem. Rec. 13, 218–223 (2013).
Goto, Y. et al. Reprogramming the translation initiation for the synthesis of physiologically stable cyclic peptides. ACS Chem. Biol. 3, 120–129 (2008).
Iwasaki, K., Goto, Y., Katoh, T. & Suga, H. Selective thioether macrocyclization of peptides having the N-terminal 2-chloroacetyl group and competing two or three cysteine residues in translation. Org. Biomol. Chem. 10, 5783–5786 (2012).
Back, J. W. et al. Mild and chemoselective peptide-bond cleavage of peptides and proteins at azido homoalanine. Angew. Chem. Int. Ed. 44, 7946–7950 (2005).
Deslongchamps, P. & Taillefer, R. J. The mechanism of hydrolysis of imidate salts. The importance of stereoelectronic control and pH of the reaction medium on the cleavage of tetrahedral intermediates. Can. J. Chem. 53, 3029–3037 (2011).
Kwan, J. C., Eksioglu, E. A., Liu, C., Paul, V. J. & Luesch, H. Grassystatins A-C from marine cyanobacteria, potent cathepsin E inhibitors that reduce antigen presentation. J. Med. Chem. 52, 5732–5747 (2009).
Al-Awadhi, F. H., Law, B. K., Paul, V. J. & Luesch, H. Grassystatins D-F, potent aspartic protease inhibitors from marine cyanobacteria as potential antimetastatic agents targeting invasive breast cancer. J. Nat. Prod. 80, 2969–2986 (2017).
Kanamori, Y. et al. Izenamides A and B, statine-containing depsipeptides, and an analogue from a marine cyanobacterium. J. Nat. Prod. 81, 1673–1681 (2018).
Walsh, C. T., O’Brien, R. V. & Khosla, C. Nonproteinogenic amino acid building blocks for nonribosomal peptide and hybrid polyketide scaffolds. Angew. Chem. Int. Ed. 52, 7098–7124 (2013).
Guibejampel, E. & Wakselman, M. Selective cleavage of para-nitrobenzyl esters with sodium dithionite. Synthetic Commun. 12, 219–223 (1982).
Istvan, E. S. et al. Esterase mutation is a mechanism of resistance to antimalarial compounds. Nat. Commun. 8, 14240 (2017).
Goto, Y. & Suga, H. The RaPID platform for the discovery of pseudo-natural macrocyclic peptides. Acc. Chem. Res. 54, 3604–3617 (2021).
Seebeck, F. P. & Szostak, J. W. Ribosomal synthesis of dehydroalanine-containing peptides. J. Am. Chem. Soc. 128, 7150–7151 (2006).
Goto, Y., Iwasaki, K., Torikai, K., Murakami, H. & Suga, H. Ribosomal synthesis of dehydrobutyrine- and methyllanthionine-containing peptides. Chem. Commun. (Camb.) 21, 3419–3421 (2009).
Seebeck, F. P., Ricardo, A. & Szostak, J. W. Artificial lantipeptides from in vitro translations. Chem. Commun. (Camb.) 47, 6141–6143 (2011).
Kato, Y. et al. Chemoenzymatic posttranslational modification reactions for the synthesis of Ψ[CH2NH]-containing peptides. Angew. Chem. Int. Ed. 59, 684–688 (2020).
Tsutsumi, H., Kuroda, T., Kimura, H., Goto, Y. & Suga, H. Posttranslational chemical installation of azoles into translated peptides. Nat. Commun. 12, 696 (2021).
Yamagishi, Y. et al. Natural product-like macrocyclic N-methyl-peptide inhibitors against a ubiquitin ligase uncovered from a ribosome-expressed de novo library. Chem. Biol. 18, 1562–1570 (2011).
Acknowledgements
We thank H. Murakami for invaluable discussions and helpful suggestions. This work was supported by KAKENHI grants (JP16H06444 to H.S. and Y.G.; JP20H05618 to H.S.; JP17H04762, JP19H01014, JP19K22243 and JP20H02866 to Y.G.; JP19J14230 to T.K.) from the Japan Society for the Promotion of Science and Human Frontier Science Program (to H.S.).
Author information
Authors and Affiliations
Contributions
Y.G. and H.S. conceived and supervised the study. All authors designed experiments. T.K., Y.H. and Y.G. synthesized acyl-donor substrates. T.K. and S.N. performed expression and modification of AzHyA-containing peptides. All authors analysed the experimental results. T.K., Y.G. and H.S. wrote the manuscript with input from all authors. Y.G. prepared manuscript figures.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Chemistry thanks Jan Vincent Arafiles, Jayanta Chatterjee, Yongchan Kwon and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Figs. 1–9, Tables 1–5, schemes 1 and 2 and methods.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Kuroda, T., Huang, Y., Nishio, S. et al. Post-translational backbone-acyl shift yields natural product-like peptides bearing hydroxyhydrocarbon units. Nat. Chem. 14, 1413–1420 (2022). https://doi.org/10.1038/s41557-022-01065-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41557-022-01065-1