Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A soil-inspired dynamically responsive chemical system for microbial modulation

Abstract

Interactions between the microbiota and their colonized environments mediate critical pathways from biogeochemical cycles to homeostasis in human health. Here we report a soil-inspired chemical system that consists of nanostructured minerals, starch granules and liquid metals. Fabricated via a bottom-up synthesis, the soil-inspired chemical system can enable chemical redistribution and modulation of microbial communities. We characterize the composite, confirming its structural similarity to the soil, with three-dimensional X-ray fluorescence and ptychographic tomography and electron microscopy imaging. We also demonstrate that post-synthetic modifications formed by laser irradiation led to chemical heterogeneities from the atomic to the macroscopic level. The soil-inspired material possesses chemical, optical and mechanical responsiveness to yield write–erase functions in electrical performance. The composite can also enhance microbial culture/biofilm growth and biofuel production in vitro. Finally, we show that the soil-inspired system enriches gut bacteria diversity, rectifies tetracycline-induced gut microbiome dysbiosis and ameliorates dextran sulfate sodium-induced rodent colitis symptoms within in vivo rodent models.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Soil-inspired dynamically responsive chemical system for microbial modulation.
Fig. 2: X-ray ptychographic, fluorescence tomography and in situ IR spectra reveal chemical composition and dynamics.
Fig. 3: Soil-inspired material with tunable conductivity under mechanical and chemical stimuli.
Fig. 4: Laser-assisted chemical modification for biofilm growth enhancement.
Fig. 5: Soil-inspired material for gut microbiome modulation and DSS-induced colitis therapy in vivo.

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available within the Article, its Supplementary Information and Supplementary Files. Data are also available from the corresponding authors upon reasonable request. Source data are available at https://osf.io/muc9g/?view_only=971b8fde8562427ab619bc30c2624cb7. Source data are provided with this Paper.

Code availability

For PtychoShelves, code is available at https://www.psi.ch/en/sls/csaxs/software, and for PtychoLib, at https://github.com/kyuepublic/ptychopy.

References

  1. Rodriguez-Caballero, E. et al. Dryland photoautotrophic soil surface communities endangered by global change. Nat. Geosci. 11, 185–189 (2018).

    Article  CAS  Google Scholar 

  2. Zheng, D., Liwinski, T. & Elinav, E. Interaction between microbiota and immunity in health and disease. Cell Res. 30, 492–506 (2020).

    Article  Google Scholar 

  3. Jimenez, M., Langer, R. & Traverso, G. Microbial therapeutics: new opportunities for drug delivery. J. Exp. Med. 216, 1005–1009 (2019).

    Article  CAS  Google Scholar 

  4. Sakimoto, K. K., Wong, A. B. & Yang, P. Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production. Science 351, 74–77 (2016).

    Article  CAS  Google Scholar 

  5. Zhang, H. et al. Bacteria photosensitized by intracellular gold nanoclusters for solar fuel production. Nat. Nanotechnol. 13, 900–905 (2018).

    Article  CAS  Google Scholar 

  6. Cestellos-Blanco, S., Zhang, H., Kim, J. M., Shen, Y. & Yang, P. Photosynthetic semiconductor biohybrids for solar-driven biocatalysis. Nat. Catal. 3, 245–255 (2020).

    Article  CAS  Google Scholar 

  7. Liu, C., Colón, B. C., Ziesack, M., Silver, P. A. & Nocera, D. G. Water splitting-biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis. Science 352, 1210–1213 (2016).

    Article  CAS  Google Scholar 

  8. Guo, J. et al. Light-driven fine chemical production in yeast biohybrids. Science 362, 813–816 (2018).

    Article  CAS  Google Scholar 

  9. Wang, T. et al. Bacteria-derived biological carbon building robust Li-S batteries. Nano Lett. 19, 4384–4390 (2019).

    Article  CAS  Google Scholar 

  10. Ding, M. et al. Nanoelectronic investigation reveals the electrochemical basis of electrical conductivity in Shewanella and Geobacter. ACS Nano 10, 9919–9926 (2016).

    Article  CAS  Google Scholar 

  11. Liu, C. et al. Nanowire–bacteria hybrids for unassisted solar carbon dioxide fixation to value-added chemicals. Nano Lett. 15, 3634–3639 (2015).

    Article  CAS  Google Scholar 

  12. Su, Y. et al. Close-packed nanowire-bacteria hybrids for efficient solar-driven CO2 fixation. Joule 4, 800–811 (2020).

    Article  CAS  Google Scholar 

  13. Cestellos-Blanco, S., Zhang, H. & Yang, P. Solar-driven carbon dioxide fixation using photosynthetic semiconductor bio-hybrids. Faraday Discuss. 215, 54–65 (2019).

    Article  CAS  Google Scholar 

  14. Tang, T.-C. et al. Materials design by synthetic biology. Nat. Rev. Mater. 6, 332–350 (2021).

    Article  CAS  Google Scholar 

  15. Huang, J. et al. Programmable and printable Bacillus subtilis biofilms as engineered living materials. Nat. Chem. Biol. 15, 34–41 (2019).

    Article  CAS  Google Scholar 

  16. Liu, X. et al. Stretchable living materials and devices with hydrogel-elastomer hybrids hosting programmed cells. Proc. Natl Acad. Sci. USA 114, 2200–2205 (2017).

    Article  CAS  Google Scholar 

  17. Wang, Y. et al. Living materials fabricated via gradient mineralization of light-inducible biofilms. Nat. Chem. Biol. 17, 351–359 (2021).

    Article  CAS  Google Scholar 

  18. Gilbert, C. et al. Living materials with programmable functionalities grown from engineered microbial co-cultures. Nat. Mater. 20, 691–700 (2021).

    Article  CAS  Google Scholar 

  19. O’Donnell, A. G., Young, I. M., Rushton, S. P., Shirley, M. D. & Crawford, J. W. Visualization, modelling and prediction in soil microbiology. Nat. Rev. Microbiol. 5, 689–699 (2007).

    Article  Google Scholar 

  20. Young, I. M. & Crawford, J. W. Interactions and self-organization in the soil-microbe complex. Science 304, 1634–1637 (2004).

    Article  CAS  Google Scholar 

  21. Chaparro, J. M., Sheflin, A. M., Manter, D. K. & Vivanco, J. M. Manipulating the soil microbiome to increase soil health and plant fertility. Biol. Fertil. Soils 48, 489–499 (2012).

    Article  Google Scholar 

  22. Wargo, J. A. Modulating gut microbes. Science 369, 1302–1303 (2020).

    Article  CAS  Google Scholar 

  23. Gupta, A., Osadchiy, V. & Mayer, E. A. Brain–gut–microbiome interactions in obesity and food addiction. Nat. Rev. Gastroenterol. Hepatol. 17, 655–672 (2020).

    Article  Google Scholar 

  24. Peters, I. R., Majumdar, S. & Jaeger, H. M. Direct observation of dynamic shear jamming in dense suspensions. Nature 532, 214–217 (2016).

    Article  CAS  Google Scholar 

  25. James, N. M., Han, E., de la Cruz, R. A. L., Jureller, J. & Jaeger, H. M. Interparticle hydrogen bonding can elicit shear jamming in dense suspensions. Nat. Mater. 17, 965–970 (2018).

    Article  CAS  Google Scholar 

  26. Lelievre, J. Starch gelatinization. J. Appl. Polym. Sci. 18, 293–296 (1974).

    Article  CAS  Google Scholar 

  27. Daeneke, T. et al. Liquid metals: fundamentals and applications in chemistry. Chem. Soc. Rev. 47, 4073–4111 (2018).

    Article  CAS  Google Scholar 

  28. Zavabeti, A. et al. A liquid metal reaction environment for the room-temperature synthesis of atomically thin metal oxides. Science 358, 332–335 (2017).

    Article  CAS  Google Scholar 

  29. Markvicka, E. J., Bartlett, M. D., Huang, X. & Majidi, C. An autonomously electrically self-healing liquid metal–elastomer composite for robust soft-matter robotics and electronics. Nat. Mater. 17, 618–624 (2018).

    Article  CAS  Google Scholar 

  30. Dickey, M. D. Emerging applications of liquid metals featuring surface oxides. ACS Appl. Mater. Interfaces 6, 18369–18379 (2014).

    Article  CAS  Google Scholar 

  31. Chen, S., Wang, H.-Z., Zhao, R.-Q., Rao, W. & Liu, J. Liquid metal composites. Matter 2, 1446–1480 (2020).

    Article  Google Scholar 

  32. Hirsch, A., Dejace, L., Michaud, H. O. & Lacour, S. P. Harnessing the rheological properties of liquid metals to shape soft electronic conductors for wearable applications. Acc. Chem. Res. 52, 534–544 (2019).

    Article  CAS  Google Scholar 

  33. Yan, J., Lu, Y., Chen, G., Yang, M. & Gu, Z. Advances in liquid metals for biomedical applications. Chem. Soc. Rev. 47, 2518–2533 (2018).

    Article  CAS  Google Scholar 

  34. Goss, C. H. et al. Gallium disrupts bacterial iron metabolism and has therapeutic effects in mice and humans with lung infections. Sci. Transl. Med. 10, eaat7520 (2018).

    Article  Google Scholar 

  35. Wegst, U. G. K., Bai, H., Saiz, E., Tomsia, A. P. & Ritchie, R. O. Bioinspired structural materials. Nat. Mater. 14, 23–36 (2015).

    Article  CAS  Google Scholar 

  36. Munch, E. et al. Tough, bio-inspired hybrid materials. Science 322, 1516–1520 (2008).

    Article  CAS  Google Scholar 

  37. Bai, H., Chen, Y., Delattre, B., Tomsia, A. P. & Ritchie, R. O. Bioinspired large-scale aligned porous materials assembled with dual temperature gradients. Sci. Adv. 1, e1500849 (2015).

    Article  Google Scholar 

  38. Mao, L.-B. et al. Synthetic nacre by predesigned matrix-directed mineralization. Science 354, 107–110 (2016).

    Article  CAS  Google Scholar 

  39. Deng, J. et al. Correlative 3D X-ray fluorescence and ptychographic tomography of frozen-hydrated green algae. Sci. Adv. 4, eaau4548 (2018).

    Article  CAS  Google Scholar 

  40. van Soest, J. J. G., Tournois, H., de Wit, D. & Vliegenthart, J. F. G. Short-range structure in (partially) crystalline potato starch determined with attenuated total reflectance Fourier-transform IR spectroscopy. Carbohydr. Res. 279, 201–214 (1995).

    Article  Google Scholar 

  41. Ramakers, L. A. I. et al. 2D-IR spectroscopy shows that optimized DNA minor groove binding of Hoechst 33258 follows an induced fit model. J. Phys. Chem. B 121, 1295–1303 (2017).

    Article  CAS  Google Scholar 

  42. Wagner, S. & Bauer, S. Materials for stretchable electronics. MRS Bull. 37, 207–213 (2012).

    Article  Google Scholar 

  43. Khan, M. R., Trlica, C., So, J.-H., Valeri, M. & Dickey, M. D. Influence of water on the interfacial behavior of gallium liquid metal alloys. ACS Appl. Mater. Interfaces 6, 22467–22473 (2014).

    Article  CAS  Google Scholar 

  44. Humphries, J. et al. Species-independent attraction to biofilms through electrical signaling. Cell 168, 200–209 (2017).

    Article  CAS  Google Scholar 

  45. Nimje, V. R. et al. Stable and high energy generation by a strain of Bacillus subtilis in a microbial fuel cell. J. Power Sources 190, 258–263 (2009).

    Article  CAS  Google Scholar 

  46. Fan, Y. & Pedersen, O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 19, 55–71 (2021).

    Article  CAS  Google Scholar 

  47. Wu, F. et al. Modulation of microbial community dynamics by spatial partitioning. Nat. Chem. Biol. 18, 394–402 (2022).

    Article  CAS  Google Scholar 

  48. Zhou, H., Tai, J., Xu, H., Lu, X. & Meng, D. Xanthoceraside could ameliorate Alzheimer’s Disease symptoms of rats by affecting the gut microbiota composition and modulating the endogenous metabolite levels. Front. Pharmacol. 10, 1035 (2019).

    Article  CAS  Google Scholar 

  49. Kong, C., Gao, R., Yan, X., Huang, L. & Qin, H. Probiotics improve gut microbiota dysbiosis in obese mice fed a high-fat or high-sucrose diet. Nutrition 60, 175–184 (2019).

    Article  CAS  Google Scholar 

  50. Gerritsen, J. et al. Characterization of Romboutsia ilealis gen. nov., sp. nov., isolated from the gastro-intestinal tract of a rat, and proposal for the reclassification of five closely related members of the genus Clostridium into the genera Romboutsia gen. nov., Intestinibacter gen. nov., Terrisporobacter gen. nov. and Asaccharospora gen. nov. Int. J. System. Evol. Microbiol. 64, 1600–1616 (2014).

    Article  CAS  Google Scholar 

  51. Zeng, Q. et al. Discrepant gut microbiota markers for the classification of obesity-related metabolic abnormalities. Sci. Rep. 9, 13424 (2019).

    Article  Google Scholar 

  52. Xu, H.-M. et al. Selection strategy of dextran sulfate sodium-induced acute or chronic colitis mouse models based on gut microbial profile. BMC Microbiol. 21, 279 (2021).

    Article  CAS  Google Scholar 

  53. Nadeau, P. et al. Prolonged energy harvesting for ingestible devices. Nat. Biomed. Eng. 1, 0022 (2017).

    Article  CAS  Google Scholar 

  54. Steiger, C. et al. Ingestible electronics for diagnostics and therapy. Nat. Rev. Mater. 4, 83–98 (2019).

    Article  CAS  Google Scholar 

  55. Mimee, M. et al. An ingestible bacterial-electronic system to monitor gastrointestinal health. Science 360, 915–918 (2018).

    Article  CAS  Google Scholar 

  56. Zhang, S. et al. A pH-responsive supramolecular polymer gel as an enteric elastomer for use in gastric devices. Nat. Mater. 14, 1065–1071 (2015).

    Article  CAS  Google Scholar 

  57. Lee, Y. et al. Therapeutic luminal coating of the intestine. Nat. Mater. 17, 834–842 (2018).

    Article  CAS  Google Scholar 

  58. Singh, J. S., Pandey, V. C. & Singh, D. P. Efficient soil microorganisms: a new dimension for sustainable agriculture and environmental development. Agr. Ecosyst. Environ. 140, 339–353 (2011).

    Article  Google Scholar 

  59. Chen, S. et al. The Bionanoprobe: hard X-ray fluorescence nanoprobe with cryogenic capabilities. J. Synchrotron Radiat. 21, 66–75 (2014).

    Article  Google Scholar 

  60. Vogt, S. MAPS: a set of software tools for analysis and visualization of 3D X-ray fluorescence data sets. J. Phys. IV Proc. 104, 635–638 (2003).

    CAS  Google Scholar 

  61. Oliver, W. C. & Pharr, G. M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1583 (1992).

    Article  CAS  Google Scholar 

  62. Oliver, W. C. & Pharr, G. M. Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J. Mater. Res. 19, 3 (2004).

    Article  CAS  Google Scholar 

  63. Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    Article  CAS  Google Scholar 

  64. Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).

    Article  CAS  Google Scholar 

  65. Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60 (2011).

    Article  Google Scholar 

  66. Max, J.-J. & Chapados, C. Isotope effects in liquid water by infrared spectroscopy. III. H2O and D2O spectra from 6,000 to 0 cm−1. J. Chem. Phys. 131, 184505 (2009).

    Article  Google Scholar 

  67. Bodis, P., Larsen, O. F. A. & Woutersen, S. Vibrational relaxation of the bending mode of HDO in liquid D2O. J. Phys. Chem. A 109, 5303–5306 (2005).

    Article  CAS  Google Scholar 

  68. Sekkal, M., Dincq, V., Legrand, P. & Huvenne, J. P. Investigation of the glycosidic linkages in several oligosaccharides using FT-IR and FT Raman spectroscopies. J. Mol. Struct. 349, 349–352 (1995).

    Article  CAS  Google Scholar 

  69. Cael, S. J., Koenig, J. L. & Blackwell, J. Infrared and Raman spectroscopy of carbohydrates: Part III: Raman spectra of the polymorphic forms of amylose. Carbohydr. Res. 29, 123–134 (1973).

    Article  CAS  Google Scholar 

  70. Liu, Q., Charlet, G., Yelle, S. & Arul, J. Phase transition in potato starch-water system I. Starch gelatinization at high moisture level. Food Res. Int. 35, 397–407 (2002).

    Article  CAS  Google Scholar 

  71. Cael, J. J., Koenig, J. L. & Blackwell, J. Infrared and Raman spectroscopy of carbohydrates. Part VI: normal coordinate analysis of V-amylose. Biopolymers 14, 1885–1903 (1975).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. K. Watters for the scientific editing of the manuscript. This work was supported by the US Office of Naval Research (N000141612958), the National Science Foundation (NSF CMMI-1848613) and a Zhong Ziyi Educational Foundation Award. This work was partially supported by the University of Chicago Materials Research Science and Engineering Center, which is funded by the National Science Foundation under award no. DMR-2011854. This work used instruments in the Electron Microscopy Service (Research Resources Center, UIC). This work made use of the BioCryo facility of Northwestern University’s NUANCE Center, which has received support from the SHyNE Resource (NSF ECCS-2025633), the IIN and Northwestern’s MRSEC programme (NSF DMR-1720139). Use of the Advanced Photon Source and the Center for Nanoscale Materials, both US Department of Energy Office of Science User Facilities, was supported by the US Department of Energy, Office of Science, under contract no. DE-AC02-06CH11357. The BNP was obtained through an NIH ARRA S10 grant no. SP0007167, and S.C. also acknowledges the support of DOE grant no. PRJ1009594. We also thank Dr. A. Tokmakoff and Dr. Z. Lu for their support and helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

B.T. supervised the research. Y.L. and B.T. conceived the idea. Y.L., X.G., J.Y. and B.T. developed the methods. Y.L., X.G., J.Y., Y.F., J.S., L.M., C.C., X.-X.Z., H.-M.T., F.S., J.H., Q.T., E.W.R., R.B., X.C., P.G., Z.C., J.D., S.C. and A.P. performed the experiments. Y.J., J.Y., H.-M.T. and F.M. analysed and processed the data. Y.L., X.G., J.Y. and B.T. wrote the paper, with comments from all authors.

Corresponding authors

Correspondence to Yiliang Lin or Bozhi Tian.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–51 and Tables 1 and 2.

Reporting Summary

Supplementary Video 1

Focused ion beam tomography images of soil-inspired material showing the soil-inspired material is porous, which is consistent with X-ray ptychography and fluorescence imaging, and cross-sectional TEM images.

Source data

Source Data Fig. 2

FTIR spectra.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Y., Gao, X., Yue, J. et al. A soil-inspired dynamically responsive chemical system for microbial modulation. Nat. Chem. 15, 119–128 (2023). https://doi.org/10.1038/s41557-022-01064-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-022-01064-2

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research