Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Photoinduced inverse vulcanization

Abstract

The inverse vulcanization (IV) of elemental sulfur to generate sulfur-rich functional polymers has attracted much recent attention. However, the harsh reaction conditions required, even with metal catalysts, constrains the range of feasible crosslinkers. We report here a photoinduced IV that enables reaction at ambient temperatures, greatly broadening the scope for both substrates and products. These conditions enable volatile and gaseous alkenes and alkynes to be used in IV, leading to sustainable alternatives for environmentally harmful plastics that were hitherto inaccessible. Density functional theory calculations reveal different energy barriers for thermal, catalytic and photoinduced IV processes. This protocol circumvents the long curing times that are common in IV, generates no H2S by-products, and produces high-molecular-weight polymers (up to 460,000 g mol−1) with almost 100% atom economy. This photoinduced IV strategy advances both the fundamental chemistry of IV and its potential industrial application to generate materials from waste feedstocks.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: IV of elemental sulfur with alkenes and alkynes.
Fig. 2: Photocatalytic IV.
Fig. 3: Representative crosslinkers/co-monomers and characterization for one of the obtained polymers.
Fig. 4: Calculated energy profiles for the formation of poly(S-DIB) by S8 with DIB under various conditions.

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the paper and its Supplementary Information files. Should any raw data files be needed in another format they are available from the corresponding author upon reasonable request. Source data are provided with this paper.

References

  1. Boyd, D. A. Sulfur and its role in modern materials science. Angew. Chem. Int. Ed. 55, 15486–15502 (2016).

    Article  CAS  Google Scholar 

  2. Griebel, J. J., Glass, R. S., Char, K. & Pyun, J. Polymerizations with elemental sulfur: a novel route to high sulfur content polymers for sustainability, energy and defense. Prog. Polym. Sci. 58, 90–125 (2016).

    Article  CAS  Google Scholar 

  3. Kohl A. I. N. & Nieisen, R. B. in Gas Purification 5th edn, 670–730 (Gulf Publishing, 1997).

  4. Worthington, M. J. H., Kucera, R. L. & Chalker, J. M. Green chemistry and polymers made from sulfur. Green Chem. 19, 2748–2761 (2017).

    Article  CAS  Google Scholar 

  5. Zhang, Y. Y., Glass, R. S., Char, K. & Pyun, J. Recent advances in the polymerization of elemental sulphur, inverse vulcanization and methods to obtain functional chalcogenide hybrid inorganic/organic polymers (CHIPs). Polym. Chem. 10, 4078–4105 (2019).

    Article  CAS  Google Scholar 

  6. Zhu, Y. Q., Romain, C. & Williams, C. K. Sustainable polymers from renewable resources. Nature 540, 354–362 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Choi, J. W. & Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 1, 16013 (2016).

    Article  CAS  Google Scholar 

  8. Chalker, J. M., Worthington, M. J. H., Lundquist, N. A. & Esdaile, L. J. Synthesis and applications of polymers made by inverse vulcanization. Top. Curr. Chem. 377, 16 (2019).

    Article  Google Scholar 

  9. Chung, W. J. et al. The use of elemental sulfur as an alternative feedstock for polymeric materials. Nat. Chem. 5, 518–524 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Griebel, J. J. et al. New infrared transmitting material via inverse vulcanization of elemental sulfur to prepare high refractive index polymers. Adv. Mater. 26, 3014–3018 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Dirlam, P. T. et al. Inverse vulcanization of elemental sulfur with 1,4-diphenylbutadiyne for cathode materials in Li–S batteries. RSC Adv. 5, 24718–24722 (2015).

    Article  CAS  Google Scholar 

  12. Zhang, Y. Y. et al. Inverse vulcanization of elemental sulfur and styrene for polymeric cathodes in Li–S batteries. J. Polym. Sci. A 55, 107–116 (2017).

    Article  CAS  Google Scholar 

  13. Zhang, Y. Y., Konopka, K. M., Glass, R. S., Char, K. & Pyun, J. Chalcogenide hybrid inorganic/organic polymers (CHIPs) via inverse vulcanization and dynamic covalent polymerizations. Polym. Chem. 8, 5167–5173 (2017).

    Article  CAS  Google Scholar 

  14. Kwon, M. et al. Dynamic covalent polymerization of chalcogenide hybrid inorganic/organic polymer resins with norbornenyl comonomers. Macromol. Res. 28, 1003–1009 (2020).

    Article  CAS  Google Scholar 

  15. Crockett, M. P. et al. Sulfur-limonene polysulfide: a material synthesized entirely from industrial by-products and its use in removing toxic metals from water and soil. Angew. Chem. Int. Ed. 55, 1714–1718 (2016).

    Article  CAS  Google Scholar 

  16. Worthington, M. J. H. et al. Laying waste to mercury: inexpensive sorbents made from sulfur and recycled cooking oils. Chem. Eur. J. 23, 16219–16230 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Tikoalu, A. D., Lundquist, N.A. & Chalker, J. M. Mercury sorbents made by inverse vulcanization of sustainable triglycerides: the plant oil structure influences the rate of mercury removal from water. Adv. Sustain. Syst. 4, 1900111 (2020).

    Article  CAS  Google Scholar 

  18. Wu, X. F. et al. Catalytic inverse vulcanization. Nat. Commun. 10, 647 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Smith, J. A. et al. Crosslinker copolymerization for property control in inverse vulcanization. Chem. Eur. J. 25, 10433–10440 (2019).

    Article  CAS  PubMed  Google Scholar 

  20. Parker, D. J. et al. Low cost and renewable sulfur-polymers by inverse vulcanisation, and their potential for mercury capture. J. Mater. Chem. A 5, 11682–11692 (2017).

    Article  CAS  Google Scholar 

  21. Smith, J. A., Wu, X. F., Berry, N. G. & Hasell, T. High sulfur content polymers: the effect of crosslinker structure on inverse vulcanization. J. Polym. Sci. A 56, 1777–1781 (2018).

    Article  CAS  Google Scholar 

  22. Hoefling, A., Lee, Y. J. & Theato, P. Sulfur-based polymer composites from vegetable oils and elemental sulfur: a sustainable active material for Li–S batteries. Macromol. Chem. Phys. 218, 9 (2017).

    Article  Google Scholar 

  23. Hoefling, A., Nguyen, D. T., Lee, Y. J., Song, S. W. & Theato, P. A sulfur–eugenol allyl ether copolymer: a material synthesized via inverse vulcanization from renewable resources and its application in Li–S batteries. Mat. Chem. Front. 1, 1818–1822 (2017).

    Article  CAS  Google Scholar 

  24. Duarte, M. E., Huber, B., Theato, P. & Mutlu, H. The unrevealed potential of elemental sulfur for the synthesis of high sulfur content bio-based aliphatic polyesters. Polym. Chem. 11, 241–248 (2020).

    Article  CAS  Google Scholar 

  25. Scheiger, J. M. et al. Inverse vulcanization of styrylethyltrimethoxysilane-coated surfaces, particles, and crosslinked materials. Angew. Chem. Int. Ed. 59, 18639–18645 (2020).

    Article  CAS  Google Scholar 

  26. Gomez, I. et al. Inverse vulcanization of sulfur with divinylbenzene: stable and easy processable cathode material for lithium–sulfur batteries. J. Power Sour. 329, 72–78 (2016).

    Article  CAS  Google Scholar 

  27. Gomez, I., Leonet, O., Blazquez, A. & Mecerreyes, D. Exploring inverse vulcanization of sulfur with natural source monomers as cathodic materials for long life lithium sulfur batteries. Abstr. Pap. Am. Chem. Soc. 253, 1 (2017).

    Google Scholar 

  28. Gomez, I., Leonet, O., Blazquez, J. A., Grande, H. J. & Mecerreyes, D. Poly(anthraquinonyl sulfides): high capacity redox polymers for energy storage. ACS Macro. Lett. 7, 419–424 (2018).

    Article  CAS  PubMed  Google Scholar 

  29. Thiounn, T., Lauer, M. K., Bedford, M. S., Smith, R. C. & Tennyson, A. G. Thermally-healable network solids of sulfur-crosslinked poly(4-allyloxystyrene). RSC Adv. 8, 39074–39082 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lauer, M. K. et al. Durable cellulose–sulfur composites derived from agricultural and petrochemical waste. Adv. Sustain. Syst. 3, 1900062 (2019).

    Article  CAS  Google Scholar 

  31. Karunarathna, M. S., Lauer, M. K. & Smith, R. C. Facile route to an organosulfur composite from biomass-derived guaiacol and waste sulfur. J. Mater. Chem. A 8, 20318–20322 (2020).

    Article  CAS  Google Scholar 

  32. Karunarathna, M. S., Tennyson, A. G. & Smith, R. C. Facile new approach to high sulfur-content materials and preparation of sulfur–lignin copolymers. J. Mater. Chem. A 8, 548–553 (2020).

    Article  Google Scholar 

  33. Diez, S., Hoefling, A., Theato, P. & Pauer, W. Mechanical and electrical properties of sulfur-containing polymeric materials prepared via inverse vulcanization. Polymers 9, 59 (2017).

  34. Arslan, M., Kiskan, B., Cengiz, E. C., Demir-Cakan, R. & Yagci, Y. Inverse vulcanization of bismaleimide and divinylbenzene by elemental sulfur for lithium sulfur batteries. Eur. Polym. J. 80, 70–77 (2016).

    Article  CAS  Google Scholar 

  35. Kleine, T. S. et al. High refractive index copolymers with improved thermomechanical properties via the inverse vulcanization of sulfur and 1,3,5-triisopropenylbenzene. ACS Macro. Lett. 5, 1152–1156 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Zhang, Y. Y. et al. Functionalized chalcogenide hybrid inorganic/organic polymers (CHIPs) via inverse vulcanization of elemental sulfur and vinylanilines. Polym. Chem. 9, 2290–2294 (2018).

    Article  CAS  Google Scholar 

  37. Gomez, I. et al. Sulfur polymers meet poly(ionic liquid)s: bringing new properties to both polymer families. Macromol. Rap. Commun. 39, 1800529 (2018).

    Article  Google Scholar 

  38. Omeir, M. Y., Wadi, V. S. & Alhassan, S. M. Inverse vulcanized sulfur–cycloalkene copolymers: effect of ring size and unsaturation on thermal properties. Mater. Lett. 259, 126887 (2020).

    Article  Google Scholar 

  39. Gomez, I., Leonet, O., Blazquez, J. A. & Mecerreyes, D. Inverse vulcanization of sulfur using natural dienes as sustainable materials for lithium–sulfur batteries. ChemSusChem 9, 3419–3425 (2016).

    Article  CAS  PubMed  Google Scholar 

  40. Parker, D. J., Chong, S. T. & Hasell, T. Sustainable inverse-vulcanised sulfur polymers. RSC Adv. 8, 27892–27899 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shukla, S. et al. Cardanol benzoxazine–sulfur copolymers for Li–S batteries: symbiosis of sustainability and performance. ChemSelect 1, 594–600 (2016).

    CAS  Google Scholar 

  42. Lopez, C. V. et al. High strength, acid-resistant composites from canola, sunflower, or linseed oils: influence of triglyceride unsaturation on material properties. J. Polym. Sci. 58, 2259–2266 (2020).

    Article  CAS  Google Scholar 

  43. Herrera, C., Ysinga, K. J. & Jenkins, C. L. Polysulfides synthesized from renewable galic components and repurposed sulfur form environmentally friendly adhensives. ACS Appl. Mater. Interfaces 11, 35312–35318 (2019).

    Article  CAS  PubMed  Google Scholar 

  44. Kang, H., Kim, H. & Park, M. J. Sulfur-rich polymers with functional linkers for high-capacity and fast-charging lithium–sulfur batteries. Adv. Energy Mater. 8, 1802423 (2018).

    Article  Google Scholar 

  45. Zhang, Y. Y. et al. Nucleophilic activation of elemental sulfur for inverse vulcanization and dynamic covalent polymerizations. J. Polym. Sci. A 57, 7–12 (2019).

    Article  CAS  Google Scholar 

  46. Zhang, Y. Y., Konopka, K. M., Glass, R. S., Char, K. & Pyun, J. Chalcogenide hybrid inorganic/organic polymers (CHIPs) via inverse vualcanization and dynamic colvanent polymerizations. Polym. Chem. 8, 5167–5173 (2017).

    Article  CAS  Google Scholar 

  47. Westerman, C. R. & Jenkins, C. L. Dynamic sulfur bonds initiate polymerization of vinyl and allyl ethers at mild temperatures. Macromolecules 51, 7233–7238 (2018).

    Article  CAS  Google Scholar 

  48. Dodd, L. J., Omar, O. & Wu, X. F. H. T. Investigating the role and scope of catalysts in inverse vulcanization. ACS Catal. 11, 4441–4455 (2021).

    Article  CAS  Google Scholar 

  49. Tian, T., Hu, R. R. & Tang, B. Z. Room temperature one-step conversion from elemental sulfur to functional polythioureas through catalyst-free multicomponent polymerizations. J. Am. Chem. Soc. 140, 6156–6163 (2018).

    Article  CAS  PubMed  Google Scholar 

  50. Ghumman, A. S. M., NM, Shamsuddin, M. R. & Abbasi, A. Evaluation of properties of sulfur-based polymers obtained by inverse vulcanization: techniques and challenges. Poly. Poly. Comp. 29, 1333–1352 (2021).

    CAS  Google Scholar 

  51. Yan, L. L. et al. Instantaneous carbonization of an acetylenic polymer into highly conductive graphene-like carbon and its application in lithium–sulfur batteries. J. Mater. Chem. A 5, 7015–7025 (2017).

    Article  CAS  Google Scholar 

  52. Shirai, M. & Okamura, H. UV-curable positive photoresists for screen printing plate. Polym. Int. 65, 362–370 (2016).

    Article  CAS  Google Scholar 

  53. Ligon-Auer, S. C., Schwentenwein, M., Gorsche, C., Stampfl, J. & Liska, R. Toughening of photo-curable polymer networks: a review. Polym. Chem. 7, 257–286 (2016).

    Article  CAS  Google Scholar 

  54. Lengwiler G. A History of Screen Printing: How an Art Evolved Into an Industry (ST Media Group International, 2013).

  55. Shi, F. X. et al. Mechanism of the zinc dithiocarbamate-activated rubber vulcanization process: a density functional theory study. ACS Appl. Polym. Mater. 3, 5188–5196 (2021).

    Article  CAS  Google Scholar 

  56. Li, Y. Z. et al. Photoreduction of inorganic carbon(plus IV) by elemental sulfur: Implications for prebiotic synthesis in terrestrial hot springs. Sci. Adv. 6, eabc3687 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Frisch, M. J. T. et al. Gaussian 16, Revision A.03 (Gaussian Inc., 2016).

  58. Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic-behavior. Phys. Rev. A 38, 3098–3100 (1988).

    Article  CAS  Google Scholar 

  59. Perdew, J. P. Density-functional approximation for the correlation-energy of the inhomogeneous electron-gas. Phys. Rev. B 33, 8822–8824 (1986).

    Article  CAS  Google Scholar 

  60. Hay, P. J. & Wadt, W. R. Abinitio effective core potentials for molecular calculations—potentials for the transition-metal atoms Sc to Hg. J. Chem. Phys. 82, 270–283 (1985).

    Article  CAS  Google Scholar 

  61. Vosko, S. H., Wilk, L. & Nusair, M. Accurate spin-dependent electron liquid correlation energies for local spin-density calculations—a critical analysis. Can. J. Phys. 58, 1200–1211 (1980).

    Article  CAS  Google Scholar 

  62. Onida, G., Reining, L. & Rubio, A. Electronic excitations: density-functional versus many-body Green’s-function approaches. Rev. Mod. Phys. 74, 601–659 (2002).

    Article  CAS  Google Scholar 

  63. Zhao, Y. & Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 120, 215–241 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding from the National Nature Science Foundation of China (numbers 22061038, 21825301), the Key Talent Projects of Gansu Province [2019]39, the Nature Science Foundation of Gansu Province (number 20YF3GA032), the National Key R&D Program of China (number 2018YFA0208602), the Shanghai Municipal Science and Technology Major Project (number 2018SHZDX03), the Programme of Introducing Talents of Discipline to Universities (number B16017), the Shanghai Science and Technology Committee (number 175207750100) and the China Postdoctoral Science Foundation (number 2020M673640XB, 2020M671020), the Natural Science Foundation of Gansu Province (20YF3GA023) and Engineering and Physical Sciences Research Council (EPSRC) (EP/v026887/1). P.Y., C.Z. and S.C. thank the China Scholarship Council (CSC) for awarding their PhD scholarships. T.H. was supported by a Royal Society University Research Fellowship. L.C., W.Z., A.I.C. and X.W. acknowledge the Leverhulme Trust via the Leverhulme Research Centre for Functional Materials Design for funding. We thank the Materials Innovation Factory (MIF) team members for their support in operating instruments. We also thank X. Zhu for his contribution to discussion and design of the figures, and D. Lester for GPC measurement.

Author information

Authors and Affiliations

Authors

Contributions

Z.-J.Q., X.W. and T.H. conceived the project. J.J. carried out the experimental works. J.J. and J.L. performed the characterizations. X.G., L.C., X.W. and T.H. conceived the computational simulations strategy. Z.-Q.W., T.L. and C.Z. performed the calculations. P.Y., W.Z., C.M. and S.C. carried out the control reactions, parallel experiments, in situ coating experiments, mercury adsorption, and performed the characterizations. X.-C.W. accessed FTIR, GPC spectra and confirmed the data. A.I.C. discussed the results and thoroughly revised the manuscript. All authors interpreted the data and contributed to the preparation of the manuscript.

Corresponding authors

Correspondence to Xue-Qing Gong, Andrew I. Cooper, Xiaofeng Wu, Tom Hasell or Zheng-Jun Quan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Courtney Jenkins and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 The chemical structures of all the crosslinkers/comonomers used in this research and proposed mechanism for photoinduced IV reaction.

a, Previous reported crosslinkers with high boiling points. b, Low-boiling points alkenes and alkynes. c, Gaseous comonomers. d, Proposed mechanism for photoinduced IV reaction.

Extended Data Fig. 2 Solubility of the resultant sulfur-rich polymers.

a, Comparison of solubility of the poly(S-DIB) produced under thermal, thermal + Zn(DTC)2, light of 435 nm and 380 nm. The picture taken within a few minutes after solvents (1 mL) were added into the vial contained polymers (5 mg). b, Representatives of solubility in DMF for sulfur-rich polymers presented in this study. c, Comparison of the solubility in DMF for selected samples without (top, A) and with (bottom, B) grinding + sonication at 60 °C for 40 min.

Extended Data Fig. 3 Comparison of characterization for soluble, insoluble fractions and the mixture of poly(S-DIB) generated by photoinduced IV.

a, 13C solid NMR of insoluble fraction and the mixture. b, FTIR spectra. c, PXRD spectra. d, TGA spectra. e, DSC spectra. f, Elemental analysis. g-m, XPS spectra.

Source data

Extended Data Fig. 4 Comparison of characterizations of different batches (three repeats) of soluble and insoluble fraction of the S-DIB polymers generated by photoinduced IV.

a,1H NMR spectra of dissolved matter. b, FTIR spectra of dissolved matter. c, PXRD of dissolved matter. d, TGA of dissolved matter. e, DSC spectra of dissolved matter. f, elemental analysis of dissolved matter. g, FTIR spectra of insoluble fractions. h, PXRD of insoluble fractions. i, TGA of insoluble fractions. j, DSC spectra of insoluble fractions. k, elemental analysis of insoluble fractions.

Source data

Extended Data Fig. 5 Detection of H2S production.

a, Pb(OAc)2 test paper results for the detection of H2S production of IV under different reaction conditions (From left to right: Thermal 160 °C, thermal 135 °C + Cat, photo 435 nm @ r.t.). b, Pb(OAc)2 solution (2 mmol%) results for the detection of H2S production of IV under different reaction conditions (Top: Thermal 140 °C, 5 h; Bottom: photo 435 nm @ r.t. for 48 h). For reaction conditions please see Supplementary Information.

Extended Data Fig. 6 Examination of the homogeneity of the resultant sulfur-rich polymers by photoinduced IV.

a, samples from different parts of the resultant polymers in flask. b, FTIR spectra. c, PXRD spectra. d, TGA spectra. e, DSC spectra. f, samples from different parts of the resultant polymers on glass slide. g, TGA spectra. h, DSC spectra. i, elemental analysis of all those different parts of resultant polymers. For reaction conditions please see the Supplementary Information.

Source data

Extended Data Fig. 7 TGA spectra of representative sulfur-rich polymers generated by photoinduced IV.

All the results show good thermal stabilities of the obtained polymers by photoinduced IV reaction.

Source data

Extended Data Fig. 8 PXRD spectra of representative sulfur-rich polymers generated by photoinduced IV.

All results show amorphas materials obtained without any residual of crystalline S8.

Source data

Extended Data Fig. 9 In-situ coating of sulfur-rich polymers on the filter paper by photoinduced IV.

a, d, photographs of bottom and top view of filter paper. b, e, filter paper adsorbed with sulfur. c, f, in situ coated poly(S-DIB) on the filter paper. g, h, SEM images of filter paper. (i, j), SEM images of filter paper adsorbed with sulfur. (k, l), SEM images of in situ coated poly(S-DIB) on the filter paper. a1, SEM image polymer-coated filter paper. b1, EDS map of polymer-coated filter paper. c1, colour-element relationship of red for sulfur, d1, colour-element relationship of green for carbon. e1, Colour-element relationship of blue for oxygen. f1. colour-element relationship of purple for chromium.

Extended Data Fig. 10 Calculation results and key intermediates of IV reaction.

a, calculation conditions. b, thermal activities. c, thermal with catalysts. d, photoinduced conditions. The results indicated that the activity of S8 can be significantly improved through the altered catalytic route and that the calculations suggest that the S8 ring-opening can occur by light irradiation only under its excited state at room temperature.

Supplementary information

Supplementary Information

Supplementary Figs. 1–115, Tables 1–8 and Discussion.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Extended Data Fig. 3

Statistical source data.

Source Data Extended Data Fig. 4

Statistical source data.

Source Data Extended Data Fig. 6

Statistical source data.

Source Data Extended Data Fig. 7

Statistical source data.

Source Data Extended Data Fig. 8

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, J., Liu, J., Wang, ZQ. et al. Photoinduced inverse vulcanization. Nat. Chem. 14, 1249–1257 (2022). https://doi.org/10.1038/s41557-022-01049-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-022-01049-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing