Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A modular XNAzyme cleaves long, structured RNAs under physiological conditions and enables allele-specific gene silencing

Abstract

Nucleic-acid catalysts (ribozymes, DNA- and XNAzymes) cleave target (m)RNAs with high specificity but have shown limited efficacy in clinical applications. Here we report on the in vitro evolution and engineering of a highly specific modular RNA endonuclease XNAzyme, FR6_1, composed of 2′-deoxy-2′-fluoro-β-d-arabino nucleic acid (FANA). FR6_1 overcomes the activity limitations of previous DNA- and XNAzymes and can be retargeted to cleave highly structured full-length (>5 kb) BRAF and KRAS mRNAs at physiological Mg2+ concentrations with allelic selectivity for tumour-associated (BRAF V600E and KRAS G12D) mutations. Phosphorothioate-FANA modification enhances FR6_1 biostability and enables rapid KRAS mRNA knockdown in cultured human adenocarcinoma cells with a G12D-allele-specific component provided by in vivo XNAzyme cleavage activity. These results provide a starting point for the development of improved gene-silencing agents based on FANA or other XNA chemistries.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: FR6_1 is an RNA endonuclease XNAzyme composed of 2′-deoxy-2′-fluoro-β-d-arabino nucleic acids (FANA).
Fig. 2: FR6_1 is a modular XNAzyme and can be reprogrammed to alternative RNA targets.
Fig. 3: Reselection and modification of an FR6_1 variant yields a biostable allele-specific XNAzyme targeting KRAS G12D RNA.
Fig. 4: KRAS-targeting XNAzymes can invade and cleave long, structured mRNA in quasi-physiological conditions.
Fig. 5: The KRAS G12D-targeting XNAzyme retains catalytic activity inside RKO cells and performs G12D-specific mRNA knockdown.

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published Article and its Supplementary Information files, except raw sequencing reads, which are available in the NCBI SRA repository, BioProject ID PRJNA847751. Source data are provided with this Paper.

References

  1. Micura, R. & Hobartner, C. Fundamental studies of functional nucleic acids: aptamers, riboswitches, ribozymes and DNAzymes. Chem. Soc. Rev. 49, 7331–7353 (2020).

    Article  CAS  PubMed  Google Scholar 

  2. Ma, L. & Liu, J. Catalytic nucleic acids: biochemistry, chemical biology, biosensors and nanotechnology. iScience 23, 100815 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Peng, H., Latifi, B., Muller, S., Luptak, A. & Chen, I. A. Self-cleaving ribozymes: substrate specificity and synthetic biology applications. RSC Chem. Biol. https://doi.org/10.1039/d0cb00207k (2021).

  4. Haseloff, J. & Gerlach, W. L. Simple RNA enzymes with new and highly specific endoribonuclease activities. Nature 334, 585–591 (1988).

    Article  CAS  PubMed  Google Scholar 

  5. Santoro, S. W. & Joyce, G. F. A general purpose RNA-cleaving DNA enzyme. Proc. Natl Acad. Sci. USA 94, 4262–4266 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Faulhammer, D. & Famulok, M. Characterization and divalent metal-ion dependence of in vitro selected deoxyribozymes which cleave DNA/RNA chimeric oligonucleotides. J. Mol. Biol. 269, 188–202 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Liu, M., Chang, D. & Li, Y. Discovery and biosensing applications of diverse RNA-cleaving DNAzymes. Acc. Chem. Res. 50, 2273–2283 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. Poje, J. E. et al. Visual displays that directly interface and provide read-outs of molecular states via molecular graphics processing units. Angew. Chem. Int. Ed. 53, 9222–9225 (2014).

    Article  CAS  Google Scholar 

  9. Kahan-Hanum, M., Douek, Y., Adar, R. & Shapiro, E. A library of programmable DNAzymes that operate in a cellular environment. Sci. Rep. 3, 1535 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Peng, H., Li, X. F., Zhang, H. & Le, X. C. A microRNA-initiated DNAzyme motor operating in living cells. Nat. Commun. 8, 14378 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Usman, N. & Blatt, L. M. Nuclease-resistant synthetic ribozymes: developing a new class of therapeutics. J. Clin. Invest. 106, 1197–1202 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Morrow, P. K. et al. An open‐label, phase 2 trial of RPI.4610 (angiozyme) in the treatment of metastatic breast cancer. Cancer 118, 4098–4104 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Purath, U. et al. Efficacy of T-cell transcription factor-specific DNAzymes in murine skin inflammation models. J. Allergy Clin. Immunol. 137, 644–647.e648 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Garn, H. & Renz, H. GATA-3-specific DNAzyme - a novel approach for stratified asthma therapy. Eur. J. Immunol. 47, 22–30 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. Greulich, T. et al. A GATA3-specific DNAzyme attenuates sputum eosinophilia in eosinophilic COPD patients: a feasibility randomized clinical trial. Respir. Res. 19, 55 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Khachigian, L. M. Deoxyribozymes as catalytic nanotherapeutic agents. Cancer Res. 79, 879–888 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. Rossi, J. J. Resurrecting DNAzymes as sequence-specific therapeutics. Sci. Transl. Med. 4, 139fs120 (2012).

    Article  Google Scholar 

  18. Fokina, A. A., Stetsenko, D. A. & François, J.-C. DNA enzymes as potential therapeutics: towards clinical application of 10-23 DNAzymes. Expert Opin. Biol. Ther. 15, 689–711 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Fokina, A. A., Chelobanov, B. P., Fujii, M. & Stetsenko, D. A. Delivery of therapeutic RNA-cleaving oligodeoxyribonucleotides (deoxyribozymes): from cell culture studies to clinical trials. Expert Opin. Drug Deliv. 14, 1077–1089 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. Zhang, J. RNA-cleaving DNAzymes: old catalysts with new tricks for intracellular and in vivo applications. Catalysts 8, 550 (2018).

    Article  Google Scholar 

  21. Cieslak, M., Szymanski, J., Adamiak, R. W. & Cierniewski, C. S. Structural rearrangements of the 10-23 DNAzyme to β3 integrin subunit mRNA induced by cations and their relations to the catalytic activity. J. Biol. Chem. 278, 47987–47996 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Victor, J., Steger, G. & Riesner, D. Inability of DNAzymes to cleave RNA in vivo is due to limited Mg2+ concentration in cells. Eur. Biophys. J. 47, 333–343 (2017).

    Article  PubMed  Google Scholar 

  23. Young, D. D., Lively, M. O. & Deiters, A. Activation and deactivation of DNAzyme and antisense function with light for the photochemical regulation of gene expression in mammalian cells. J. Am. Chem. Soc. 132, 6183–6193 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rivory, L. et al. The DNAzymes Rs6, Dz13, and DzF have potent biologic effects independent of catalytic activity. Oligonucleotides 16, 297–312 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Goodchild, A. et al. Cytotoxic G-rich oligodeoxynucleotides: putative protein targets and required sequence motif. Nucleic Acids Res. 35, 4562–4572 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dass, C. R. & Choong, P. F. Sequence-related off-target effect of Dz13 against human tumor cells and safety in adult and fetal mice following systemic administration. Oligonucleotides 20, 51–60 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Geyer, C. R. & Sen, D. Evidence for the metal-cofactor independence of an RNA phosphodiester-cleaving DNA enzyme. Chem. Biol. 4, 579–593 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Carrigan, M. A., Ricardo, A., Ang, D. N. & Benner, S. A. Quantitative analysis of a RNA-cleaving DNA catalyst obtained via in vitro selection. Biochemistry 43, 11446–11459 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Kasprowicz, A., Stokowa-Sołtys, K., Jeżowska-Bojczuk, M., Wrzesiński, J. & Ciesiołka, J. Characterization of highly efficient RNA-cleaving DNAzymes that function at acidic pH with no divalent metal-ion cofactors. Chem. Open 6, 46–56 (2017).

    CAS  Google Scholar 

  30. Roth, A. & Breaker, R. R. An amino acid as a cofactor for a catalytic polynucleotide. Proc. Natl Acad. Sci. USA 95, 6027–6031 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hollenstein, M., Hipolito, C. J., Lam, C. H. & Perrin, D. M. A self-cleaving DNA enzyme modified with amines, guanidines and imidazoles operates independently of divalent metal cations (M2+). Nucleic Acids Res. 37, 1638–1649 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang, Y., Liu, E., Lam, C. H. & Perrin, D. M. A densely modified M2+-independent DNAzyme that cleaves RNA efficiently with multiple catalytic turnover. Chem. Sci. 9, 1813–1821 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hollenstein, M. Nucleic acid enzymes based on functionalized nucleosides. Curr. Opin. Chem. Biol. 52, 93–101 (2019).

    Article  CAS  PubMed  Google Scholar 

  34. Abdelgany, A., Wood, M. & Beeson, D. Hairpin DNAzymes: a new tool for efficient cellular gene silencing. J. Gene Med. 9, 727–738 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Rouge, J. L. et al. Ribozyme-spherical nucleic acids. J. Am. Chem. Soc. 137, 10528–10531 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Thai, H. B. D. et al. Tetrahedral DNAzymes for enhanced intracellular gene-silencing activity. Chem. Commun. 54, 9410–9413 (2018).

    Article  CAS  Google Scholar 

  37. Anosova, I. et al. The structural diversity of artificial genetic polymers. Nucleic Acids Res. 44, 1007–1021 (2016).

    Article  CAS  PubMed  Google Scholar 

  38. Khvorova, A. & Watts, J. K. The chemical evolution of oligonucleotide therapies of clinical utility. Nat. Biotechnol. 35, 238–248 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Morihiro, K., Kasahara, Y. & Obika, S. Biological applications of xeno nucleic acids. Mol. Biosyst. 13, 235–245 (2017).

    Article  CAS  PubMed  Google Scholar 

  40. McKenzie, L. K., El-Khoury, R., Thorpe, J. D., Damha, M. J. & Hollenstein, M. Recent progress in non-native nucleic acid modifications. Chem. Soc. Rev. 50, 5126–5164 (2021).

    Article  CAS  PubMed  Google Scholar 

  41. Vester, B. et al. LNAzymes: incorporation of LNA-type monomers into DNAzymes markedly increases RNA cleavage. J. Am. Chem. Soc. 124, 13682–13683 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Schubert, S. et al. Gaining target access for deoxyribozymes. J. Mol. Biol. 339, 355–363 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Vester, B. et al. Locked nucleoside analogues expand the potential of DNAzymes to cleave structured RNA targets. BMC Mol. Biol. 7, 19 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Donini, S., Clerici, M., Wengel, J., Vester, B. & Peracchi, A. The advantages of being locked. Assessing the cleavage of short and long RNAs by locked nucleic acid-containing 8-17 deoxyribozymes. J. Biol. Chem. 282, 35510–35518 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Christiansen, J. K., Lobedanz, S., Arar, K., Wengel, J. & Vester, B. LNA nucleotides improve cleavage efficiency of singular and binary hammerhead ribozymes. Bioorg. Med. Chem. 15, 6135–6143 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Kaur, H., Scaria, V. & Maiti, S. ‘Locked onto the target’: increasing the efficiency of antagomirzymes using locked nucleic acid modifications. Biochemistry 49, 9449–9456 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Fokina, A. A., Meschaninova, M. I., Durfort, T., Venyaminova, A. G. & François, J.-C. Targeting insulin-like growth factor I with 10-23 DNAzymes: 2’-O-methyl modifications in the catalytic core enhance mRNA cleavage. Biochemistry 51, 2181–2191 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Chakravarthy, M., Aung-Htut, M. T., Le, B. T. & Veedu, R. N. Novel chemically-modified DNAzyme targeting integrin alpha-4 RNA transcript as a potential molecule to reduce inflammation in multiple sclerosis. Sci. Rep. 7, 1613 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Wang, Y., Nguyen, K., Spitale, R. C. & Chaput, J. C. A biologically stable DNAzyme that efficiently silences gene expression in cells. Nat. Chem. 13, 319–326 (2021).

    Article  CAS  PubMed  Google Scholar 

  50. Nguyen, K., Wang, Y., England, W. E., Chaput, J. C. & Spitale, R. C. Allele-specific RNA knockdown with a biologically stable and catalytically efficient XNAzyme. J. Am. Chem. Soc. 143, 4519–4523 (2021).

    Article  CAS  PubMed  Google Scholar 

  51. Taylor, A. I. & Holliger, P. Matters Arising: comments on the reported gene silencing activity of the modified X10-23 DNAzyme. Nat. Chem. 14, 855–858 (2022).

    Article  CAS  PubMed  Google Scholar 

  52. Houlihan, G., Arangundy-Franklin, S. & Holliger, P. Engineering and application of polymerases for synthetic genetics. Curr. Opin. Biotechnol. 48, 168–179 (2017).

    Article  CAS  PubMed  Google Scholar 

  53. Houlihan, G., Arangundy-Franklin, S. & Holliger, P. Exploring the chemistry of genetic information storage and propagation through polymerase engineering. Acc. Chem. Res. 50, 1079–1087 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Taylor, A. I., Houlihan, G. & Holliger, P. Beyond DNA and RNA: the expanding toolbox of synthetic genetics. Cold Spring Harb. Perspect. Biol. 11, a032490 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Taylor, A. I. & Holliger, P. Directed evolution of artificial enzymes (XNAzymes) from diverse repertoires of synthetic genetic polymers. Nat. Protoc. 10, 1625–1642 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. Taylor, A. I. et al. Catalysts from synthetic genetic polymers. Nature 518, 427–430 (2015).

    Article  CAS  PubMed  Google Scholar 

  57. Wang, Y., Ngor, A. K., Nikoomanzar, A. & Chaput, J. C. Evolution of a general RNA-cleaving FANA enzyme. Nat. Commun. 9, 5067 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Pinheiro, V. B. et al. Synthetic genetic polymers capable of heredity and evolution. Science 336, 341–344 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Brister, J. R., Ako-Adjei, D., Bao, Y. & Blinkova, O. NCBI viral genomes resource. Nucleic Acids Res. 43, D571–D577 (2015).

    Article  CAS  PubMed  Google Scholar 

  60. Taylor, A. I. et al. Nanostructures from synthetic genetic polymers. ChemBioChem 17, 1107–1110 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bevilacqua, P. C. et al. An ontology for facilitating discussion of catalytic strategies of RNA-cleaving enzymes. ACS Chem. Biol. 14, 1068–1076 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Rosenbach, H. et al. Influence of monovalent metal ions on metal binding and catalytic activity of the 10-23 DNAzyme. Biol. Chem. 402, 99–111 (2020).

    Article  PubMed  Google Scholar 

  63. Yamagami, R., Bingaman, J. L., Frankel, E. A. & Bevilacqua, P. C. Cellular conditions of weakly chelated magnesium ions strongly promote RNA stability and catalysis. Nat. Commun. 9, 2149 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Landrum, M. J. et al. ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 46, D1062–D1067 (2018).

    Article  CAS  PubMed  Google Scholar 

  65. Bailey, M. H. et al. Comprehensive characterization of cancer driver genes and mutations. Cell 173, 371–385 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ferrari, N. et al. Characterization of antisense oligonucleotides comprising 2′-deoxy-2′-fluoro-β-D-arabinonucleic acid (FANA): specificity, potency and duration of activity. Ann. N. Y. Acad. Sci. 1082, 91–102 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Yang, E. et al. Decay rates of human mRNAs: correlation with functional characteristics and sequence attributes. Genome Res. 13, 1863–1872 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Takahashi, M. et al. Dual mechanisms of action of self-delivering, anti-HIV-1 FANA oligonucleotides as a potential new approach to HIV therapy. Mol. Ther. Nucleic Acids 17, 615–625 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Damha, M. J. et al. Hybrids of RNA and arabinonucleic acids (ANA and 2′F-ANA) are substrates of ribonuclease H. J. Am. Chem. Soc. 120, 12976–12977 (1998).

    Article  CAS  Google Scholar 

  70. Lacombe, J. et al. Antisense inhibition of Flk-1 by oligonucleotides composed of 2′-deoxy-2′-fluoro-β-D-arabino- and 2′-deoxy-nucleosides. Can. J. Physiol. Pharmacol. 80, 951–961 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Brattain, M. G. et al. Heterogeneity of human colon carcinoma. Cancer Metastasis Rev. 3, 177–191 (1984).

    Article  CAS  PubMed  Google Scholar 

  72. Lieber, M., Mazzetta, J., Nelson-Rees, W., Kaplan, M. & Todaro, G. Establishment of a continuous tumor-cell line (panc-1) from a human carcinoma of the exocrine pancreas. Int. J. Cancer 15, 741–747 (1975).

    Article  CAS  PubMed  Google Scholar 

  73. Dowler, T. et al. Improvements in siRNA properties mediated by 2′-deoxy-2′-fluoro-β-D-arabinonucleic acid (FANA). Nucleic Acids Res. 34, 1669–1675 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kalota, A. et al. 2′-Deoxy-2′-fluoro-β-D-arabinonucleic acid (2′F-ANA) modified oligonucleotides (ON) effect highly efficient, and persistent, gene silencing. Nucleic Acids Res. 34, 451–461 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lietard, J. et al. Mapping the affinity landscape of thrombin-binding aptamers on 2′F-ANA/DNA chimeric G-quadruplex microarrays. Nucleic Acids Res. 45, 1619–1632 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Peng, C. G. & Damha, M. J. G-quadruplex induced stabilization by 2′-deoxy-2′-fluoro-D-arabinonucleic acids (2′F-ANA). Nucleic Acids Res. 35, 4977–4988 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Martin-Pintado, N. et al. The solution structure of double helical arabino nucleic acids (ANA and 2′F-ANA): effect of arabinoses in duplex-hairpin interconversion. Nucleic Acids Res. 40, 9329–9339 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Motwani, M., Pesiridis, S. & Fitzgerald, K. A. DNA sensing by the cGAS-STING pathway in health and disease. Nat. Rev. Genet. 20, 657–674 (2019).

    Article  CAS  PubMed  Google Scholar 

  79. Tan, X., Sun, L., Chen, J. & Chen, Z. J. Detection of microbial infections through innate immune sensing of nucleic acids. Annu. Rev. Microbiol. 72, 447–478 (2018).

    Article  CAS  PubMed  Google Scholar 

  80. Stojic, L. et al. Specificity of RNAi, LNA and CRISPRi as loss-of-function methods in transcriptional analysis. Nucleic Acids Res. 46, 5950–5966 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Safdar, S., Lammertyn, J. & Spasic, D. RNA-cleaving NAzymes: the next big thing in biosensing. Trends Biotechnol. 38, 1343–1359 (2020).

    Article  CAS  PubMed  Google Scholar 

  82. Afgan, E. et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res. 46, W537–W544 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Article  CAS  PubMed  Google Scholar 

  84. Picelli, S. et al. Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat. Methods 10, 1096–1098 (2013).

    Article  CAS  PubMed  Google Scholar 

  85. Lorenz, R. et al. ViennaRNA Package 2.0. Algorithms Mol. Biol. 6, 26 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Santoro, S. W. & Joyce, G. F. Mechanism and utility of an RNA-cleaving DNA enzyme. Biochemistry 37, 13330–13342 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Watson (Sigma-Aldrich/Merck) for synthesis of FANA oligonucleotides, L. Stadler for assistance with preliminary experiments on the delivery of FANA, and members of the Holliger and Taylor groups for discussions and suggestions. This work was supported by the Medical Research Council (A.I.T., C.J.K.W., S.-Y.P.-C., P.H., programme no. MC_U105178804), the Biotechnology and Biological Sciences Research Council (INTENSIFY BB/M005623/1 to P.H. and A.I.T.), the AMGEN Scholars programme (C.J.K.W.), the Wellcome Trust (M.J.D., PhD studentship) and a Wellcome Trust/Royal Society Sir Henry Dale Fellowship to A.I.T. (215453/Z/19/Z).

Author information

Authors and Affiliations

Authors

Contributions

A.I.T. and P.H. conceived the project. A.I.T. designed and conducted experiments and analysed data with C.J.K.W., M.J.D. and S.-Y.P.-C. A.I.T. and P.H. wrote the manuscript, with comments from all authors.

Corresponding authors

Correspondence to Alexander I. Taylor or Philipp Holliger.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Hongzhou Gu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Steady-state kinetics of FR6_1 XNAzyme-catalysed RNA cleavage under quasi-physiological conditions.

Michaelis-Menten curve determined for the cleavage of Sub_Ebo RNA by the FR6_1 XNAzyme under quasi-physiological conditions (37 °C, pH 7.4, 1 mM Mg2+).

Source data

Extended Data Fig. 2 Evaluation of RNA substrate cleavage site preferences by the FR6_1 XNAzyme.

(a) Sequence of “FR6_1_NucSR”, a variant of XNAzyme FR6_1 retargeted to cleave RNA substrate “NucSR”(see reference (56)) by changing FANA residues shown in brown. (b) Urea-PAGE gels showing reactions of FR6_1_NucSR (5 uM) with all possible variants of RNA substrate NucSR (1 uM) at positions 8, 9 and 10 (shown in red in (a))(24 h, 17 °C, 10 mM Mg2+).

Source data

Extended Data Fig. 3 Engineering the KRAS G12D-targeting XNAzyme to invade long RNA substrates.

(a-c) Urea-PAGE gels showing activity of variants of XNAzyme FR6_1_KRas12 (“Fz12”)(1.25 uM) with alternative length substrate-binding arms as indicated, and FR6_1_KRas12B (“Fz12B”)(which has 10 + 10, partially FANA-PS modified binding arms, see Fig. 3), on alternative length RNA substrates (0.25 uM): (a) Sub_KRas12 (30 nt), (b) Sub_KRas12_long (68 nt) and Sub_KRas_ORF (2.1 kb), a synthetic transcript comprising the full KRAS ORF and UTRs (1.5 h, 37 °C, pH 7.4, 1 mM Mg2+). (d) Urea-PAGE gel showing Fz12B (10 nM) performing multiple turnover catalysis of Sub_KRas12 [G12D] (1 uM) RNA cleavage (37 °C, pH 7.4, 1 mM Mg2+). Substrate secondary structure diagrams were generated using RNAfold (Methods reference85,86).

Source data

Extended Data Fig. 4 Characterisation of RNase H1-dependent RNA cleavage induced by active and inactive XNAzymes and DNAzymes.

Urea-PAGE gel showing assays of human RNase H1-mediated cleavage of RNA substrate Sub_KRas12_long [G12D], induced by XNAzyme FR6_1_KRas12B (“Fz12B”), catalytically-inactive FR6_1_KRas12B[G27A] (“Fz12Bi”), or DNAzymes 10-23_KRasC [6 + 7] or 10-23_KRasC [10 + 10]. Sequences and putative secondary structures of Fz12B and target RNA show deduced locations of cleavage sites mediated by RNase H (red arrows) or the FANAzyme alone (green arrow). Note that partial alkaline hydrolysis of the RNA substrate (-OH) and XNAzyme-mediated cleavage produce 5’ RNA products that terminate in 3’ cyclic phosphate, whereas RNase H-mediated cleavage produces 3’ OH termini; the resulting difference in PAGE mobility has been taken in account when deducing cleavage sites.

Source data

Extended Data Fig. 5 The KRAS G12D-targeting XNAzyme performs G12D-specific mRNA knockdown inside PANC-1 cells.

Example droplet digital RT-qPCR (ddPCR) multiplex assays (see Supplementary Table 3) of (a) total KRAS mRNA (channel 1, blue) and reference EIF2B2 mRNA (channel 2, green), and (b) KRAS alleles G12D (c.35 G > A) mRNA (channel 1, blue) and wild-type (wt) mRNA (channel 2, green), in RKO cells (homozygous for either G12D or wt KRAS) or PANC-1 cells (heterozygous for G12D and wt KRAS). Together, these results show that the baseline level of total KRAS expression in PANC-1 cells was ~3-fold higher than in RKO KRASG12D/G12D, with the G12D allele mRNA transcribed at approximately twice the level of the wild-type KRAS mRNA. (c) Dose response curves showing (bottom graph) total KRAS mRNA levels (relative to reference EIF2B2 mRNA and normalised to cells transfected with buffer alone (yellow circles)) and (top graph) ratio of G12D: wt KRAS mRNA, in PANC-1 cells 3 h after transfection with XNAzyme “FR6_1_KRas12B” (Fz12B)(red circles and dashed line) or the catalytically inactive mutant “FR6_1_KRas12Bi” (Fz12Bi)(black triangles and dashed line) at the concentrations shown. Each datum represents an independent biological replicate and error bars show ddPCR total error. (d) Chart showing proposed interpretation of data from (c); levels of G12D (blue bars) and wt (green bars) KRAS mRNA are equally reduced by RNase H-mediated knockdown (represented as dashed blue and green bars) induced by both the active and inactive XNAzymes (although to a greater degree by the inactive XNAzyme). In the case of the inactive XNAzyme, due to the unequal baseline transcription of G12D and wt KRAS mRNA, this causes an increase in the ratio of G12D: wt KRAS mRNA. With the active XNAzyme - in addition to this effect - allele-specific XNAzyme-mediated knockdown (represented as dashed purple bar) reduces the level of G12D, but not wt KRAS mRNA, maintaining (or reducing) of the baseline ratio of G12D: wt KRAS mRNA.

Supplementary information

Supplementary Information

Supplementary Figs. 1–9, source data for supplementary figures, the key to source data displayed as graphs in the supplementary figures.

Reporting Summary

Supplementary Table 1

Supplementary Tables 1–3

Supplementary Data 1

Raw ddPCR data for data used in the supplementary figures.

Supplementary Table 2

Key to source data displayed as graphs in figures and extended data.

Source data

Source Data Fig. 1

Raw image of urea PAGE gel shown in Figs. 1b, 1c, 1d, 1e & 1f. Key to source data displayed as graphs is provided in: Main Fz graphed data.

Source Data Fig. 2

Raw image of urea PAGE gel shown in Figs. 2a, 2b, 2c & 2d. Key to source data displayed as graphs is provided in: Main Fz graphed data.

Source Data Fig. 3

Raw image of Urea PAGE gel shown in Figs. 3b, 3c, 3d & 3e. Key to source data displayed as graphs is provided in: Main Fz graphed data.

Source Data Fig. 4

Raw image of urea PAGE gel shown in Fig. 4a (unstained). Raw image of urea PAGE gel shown in Fig. 4a (stained with Sybr Gold). Raw image of urea PAGE gel shown in Fig. 4a.

Source Data Fig. 4, Source Data Fig. 5 and Source Data Extended Data Fig. 5

Contains raw ddPCR data used to produce graph shown in Fig. 4b, Fig. 5b, 5c & 5d, Fig. 5a, 5b & 5c.

Source Data Fig. 5

Raw image of agarose electrophoresis gel shown in Fig. 5e.

Source Data Extended Data Fig. 1

Raw images of urea PAGE gel used to produce graph shown in Extended Data Fig. 1. Key to source data displayed as graphs is provided in: Main Fz graphed data.

Source Data Extended Data Fig. 2

Raw images of urea PAGE gels shown in Extended Data Fig. 2b.

Source Data Extended Data Fig. 3

Raw image of urea PAGE gel shown in Extended Data Fig. 3a (unstained). Raw image of urea PAGE gel shown in Extended Data Fig. 3a (Sybr Gold stained). Raw image of urea PAGE gel shown in Extended Data Fig. 3b (unstained). Raw image of urea PAGE gel shown in Extended Data Fig. 3b (Sybr Gold stained). Raw image of urea PAGE gel shown in Extended Data Fig. 3c (unstained). Raw image of urea PAGE gel shown in Extended Data Fig. 3c (Sybr Gold stained). Raw image of urea PAGE gel shown in Extended Data Fig. 3d.

Source Data Extended Data Fig. 4

Raw image of urea PAGE gel shown in Extended Data Fig. 4.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taylor, A.I., Wan, C.J.K., Donde, M.J. et al. A modular XNAzyme cleaves long, structured RNAs under physiological conditions and enables allele-specific gene silencing. Nat. Chem. 14, 1295–1305 (2022). https://doi.org/10.1038/s41557-022-01021-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-022-01021-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing