Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genome-based discovery and total synthesis of janustatins, potent cytotoxins from a plant-associated bacterium

Abstract

Host-associated bacteria are increasingly being recognized as underexplored sources of bioactive natural products with unprecedented chemical scaffolds. A recently identified example is the plant-root-associated marine bacterium Gynuella sunshinyii of the chemically underexplored order Oceanospirillales. Its genome contains at least 22 biosynthetic gene clusters, suggesting a rich and mostly uncharacterized specialized metabolism. Here, in silico chemical prediction of a non-canonical polyketide synthase cluster has led to the discovery of janustatins, structurally unprecedented polyketide alkaloids with potent cytotoxicity that are produced in minute quantities. A combination of MS and two-dimensional NMR experiments, density functional theory calculations of 13C chemical shifts and semiquantitative interpretation of transverse rotating-frame Overhauser effect spectroscopy data were conducted to determine the relative configuration, which enabled the total synthesis of both enantiomers and assignment of the absolute configuration. Janustatins feature a previously unknown pyridodihydropyranone heterocycle and an unusual biological activity consisting of delayed, synchronized cell death at subnanomolar concentrations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Biosynthetic loci identified in the genome of G. sunshinyii YC6258.
Fig. 2: The jan gene cluster in G. sunshinyii YC6258.
Fig. 3: Structure elucidation of janustatins.
Fig. 4: Total synthesis of janustatin A.
Fig. 5: Proposed biosynthesis of janustatins.
Fig. 6: Growth of 3Y1 cancer cells treated with 1.8 nM janustatin A (13).

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available in this Article and the Supplementary Information. The genome sequence of G. sunshinyii YC6258 is accessible in GenBank under accession no. NZ_CP007142.1, the janustatin gene cluster is located at locus YC6258_05439 (AJQ97469.1) to YC6258_05446 (AJQ97476.1). The closest homologues to these proteins can be found under accession nos. WP_158657926.1, WP_086931657.1, WP_038924948.1, RKZ46405.1, WP_087684108.1 and WP_086931660.1. Candidate proteins for the free-standing KR are available under accession numbers: WP_044620326.1, WP_044617647.1, WP_044617493.1, WP_044616081.1, WP_044617507.1, WP_044618569.1, WP_044619377.1, WP_044617759.1, WP_144407613.1 and WP_052830250.1. The janustatin BGC has been deposited in MIBiG under accession no. BGC0002136.

References

  1. Wilson, M. C. et al. An environmental bacterial taxon with a large and distinct metabolic repertoire. Nature 506, 58–62 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Elshahawi, S. I. et al. Boronated tartrolon antibiotic produced by symbiotic cellulose-degrading bacteria in shipworm gills. Proc. Natl Acad. Sci. USA 110, e295–e304 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sit, C. S. et al. Variable genetic architectures produce virtually identical molecules in bacterial symbionts of fungus-growing ants. Proc. Natl Acad. Sci. USA 112, 13150–13154 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ueoka, R. et al. Genome-based identification of a plant-associated marine bacterium as a rich natural product source. Angew. Chem. Int. Ed. 130, 14727–14731 (2018).

    Article  Google Scholar 

  5. Waterworth, S. C. et al. Horizontal gene transfer to a defensive symbiont with a reduced genome in a multipartite beetle microbiome. mBio 11, e02430-19 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Zan, J. et al. A microbial factory for defensive kahalalides in a tripartite marine symbiosis. Science 364, eaaw6732 (2019).

    Article  CAS  PubMed  Google Scholar 

  7. Tobias, N. J. et al. Natural product diversity associated with the nematode symbionts Photorhabdus and Xenorhabdus. Nat. Microbiol. 2, 1676–1685 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. Rust, M. et al. A multiproducer microbiome generates chemical diversity in the marine sponge Mycale hentscheli. Proc. Natl Acad. Sci. USA 117, 9508–9518 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Storey, M. A. et al. Metagenomic exploration of the marine sponge Mycale hentscheli uncovers multiple polyketide-producing bacterial symbionts. mBio 11, e02997-19 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Freeman, M. F. et al. Metagenome mining reveals polytheonamides as posttranslationally modified ribosomal peptides. Science 338, 387–390 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Helfrich, E. J. N. & Piel, J. Biosynthesis of polyketides by trans-AT polyketide synthases. Nat. Prod. Rep. 33, 231–316 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Fuller, A. T. et al. Pseudomonic acid: an antibiotic produced by Pseudomonas fluorescens. Nature 234, 416–417 (1971).

    Article  CAS  PubMed  Google Scholar 

  13. El-Sayed, A. K. et al. Characterization of the mupirocin biosynthesis gene cluster from Pseudomonas fluorescens NCIMB 10586. Chem. Biol. 10, 419–430 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Pulsawat, N., Kitani, S. & Nihira, T. Characterization of biosynthetic gene cluster for the production of virginiamycin M, a streptogramin type A antibiotic, in Streptomyces virginiae. Gene 393, 31–42 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Mast, Y. et al. Characterization of the 'pristinamycin supercluster' of Streptomyces pristinaespiralis. Microb. Biotechnol. 4, 192–206 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cocito, C. G. Antibiotics of the virginiamycin family, inhibitors which contain synergistic components. Microbiol. Rev. 43, 145–198 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pöplau, P., Frank, S., Morinaka, B. I. & Piel, J. An enzymatic domain for the formation of cyclic ethers in complex polyketides. Angew. Chem. Int. Ed. 52, 13215–13218 (2013).

    Article  Google Scholar 

  18. Ueoka, R., Bortfeld-Miller, M., Morinaka, B. I., Vorholt, J. A. & Piel, J. Toblerols: cyclopropanol-containing polyketide modulators of antibiosis in Methylobacteria. Angew. Chem. Int. Ed. 130, 989–993 (2018).

    Article  Google Scholar 

  19. Meoded, R. A. et al. A polyketide synthase component for oxygen insertion into polyketide backbones. Angew. Chem. Int. Ed. 57, 11644–11648 (2018).

    Article  CAS  Google Scholar 

  20. Ma, M., Lohman, J. R., Liu, T. & Shen, B. C-S bond cleavage by a polyketide synthase domain. Proc. Natl Acad. Sci. USA 112, 10359–11364 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chung, E. J., Park, J. A., Jeon, C. O. & Chung, Y. R. Gynuella sunshinyii gen. nov., sp. nov., an antifungal rhizobacterium isolated from a halophyte, Carex scabrifolia Steud. Int. J. Syst. Evol. Microbiol. 65, 1038–1043 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Blin, K. et al. AntiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. 47, W81–W87 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Helfrich, E. J. N. et al. Automated structure prediction of trans-acyltransferase polyketide synthase products. Nat. Chem. Biol. 15, 813–821 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ueoka, R. et al. Genome mining of oxidation modules in trans-acyltransferase polyketide synthases reveals a culturable source for lobatamides. Angew. Chem. Int. Ed. 59, 7761–7765 (2020).

    Article  CAS  Google Scholar 

  25. Chung, Y. R. & Khan, H. Novel nitrilase and method for preparing sangivamycin by using same. Patent KR20150047041A (2014).

  26. Helfrich, E. J. N. et al. Evolution of combinatorial diversity in trans-acyltransferase polyketide synthase assembly lines across bacteria. Nat. Commun. 12, 1422 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nguyen, T. et al. Exploiting the mosaic structure of trans-acyltransferase polyketide synthases for natural product discovery and pathway dissection. Nat. Biotechnol. 26, 225–233 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Grindberg, R. V. et al. Single cell genome amplification accelerates identification of the apratoxin biosynthetic pathway from a complex microbial assemblage. PLoS ONE 6, e18565 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Luesch, H., Yoshida, W. Y., Moore, R. E., Paul, V. J. & Corbett, T. H. Total structure determination of apratoxin A, a potent novel cytotoxin from the marine cyanobacterium Lyngbya majuscula. J. Am. Chem. Soc. 123, 5418–5423 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Buchholz, T. J. et al. Polyketide β-branching in bryostatin biosynthesis: identification of surrogate acetyl-ACP donors for BryR, an HMG-ACP synthase. Chem. Biol. 17, 1092–1100 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Davidson, S. K., Allen, S. W., Lim, G. E., Anderson, C. M. & Haygood, M. G. Evidence for the biosynthesis of bryostatins by the bacterial symbiont ‘Candidatus Endobugula sertula’ of the bryozoan Bugula neritina. Appl. Environ. Microbiol. 67, 4531–4537 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Skiba, M. A. et al. Repurposing the GNAT fold in the initiation of polyketide biosynthesis. Structure 28, 63–74 (2020).

    Article  CAS  PubMed  Google Scholar 

  33. Skiba, M. A. et al. A mononuclear iron-dependent methyltransferase catalyzes initial steps in assembly of the apratoxin A polyketide starter unit. ACS Chem. Biol. 12, 3039–3048 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Skiba, M. A. et al. Biosynthesis of t-butyl in apratoxin A: functional analysis and architecture of a PKS loading module. ACS Chem. Biol. 13, 1640–1650 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Röttig, M. et al. NRPSpredictor2—a web server for predicting NRPS adenylation domain specificity. Nucleic Acids Res. 39, W362–W367 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lu, S. et al. CDD/SPARCLE: the conserved domain database in 2020. Nucleic Acids Res. 48, D265–D268 (2020).

    Article  CAS  PubMed  Google Scholar 

  37. Hehre, W. et al. Efficient protocol for accurately calculating 13C chemical shifts of conformationally flexible natural products: scope, assessment and limitations. J. Nat. Prod. 82, 2299–2306 (2019).

    Article  CAS  PubMed  Google Scholar 

  38. Hwang, T.-L. & Shaka, A. J. Cross relaxation without TOCSY: transverse rotating-frame Overhauser effect spectroscopy. J. Am. Chem. Soc. 114, 3157–3159 (1992).

    Article  CAS  Google Scholar 

  39. Nunez-Vergara, L. J. et al. Chromenopyridines: promising scaffolds for medicinal and biological chemistry. Curr. Med. Chem. 18, 4761–4785 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Duffey, M. O., LeTiran, A. & Morken, J. P. Enantioselective total synthesis of borrelidin. J. Am. Chem. Soc. 125, 1458–1459 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Zhao, C.-X., Duffey, M. O., Taylor, S. J. & Morken, J. P. Enantio- and diastereoselective reductive aldol reactions with iridium-pybox catalysts. Org. Lett. 3, 1829–1831 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Evans, D. A., Ratz, A. M., Huff, B. E. & Sheppard, G. S. Total synthesis of the polyether antibiotic lonomycin A (Emericid). J. Am. Chem. Soc. 117, 3448–3467 (1995).

    Article  CAS  Google Scholar 

  43. Ahlers, A., De Haro, T., Gabor, B. & Fürstner, A. Concise total synthesis of enigmazole A. Angew. Chem. Int. Ed. 55, 1406–1411 (2016).

    Article  CAS  Google Scholar 

  44. Stanton, G. R., Koz, G. & Walsh, P. J. Highly diastereoselective chelation-controlled additions to α-silyloxy ketones. J. Am. Chem. Soc. 133, 7969–7776 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Stanton, G. R., Kauffman, M. C. & Walsh, P. J. Diastereoselective chelation-controlled additions to β-silyloxy aldehydes. Org. Lett. 14, 3368–3371 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Benneche, T., Strande, P. & Undheim, K. A new synthesis of chloromethyl benzyl ethers. Synthesis 1983, 762–763 (1983).

    Article  Google Scholar 

  47. Frauenrath, H., Brethauer, D., Reim, S., Maurer, M. & Raabe, G. Highly enantioselective isomerization of 4,7-dihydro-1,3-dioxepins catalyzed by Me-DuPHOS-modified dihalogenonickel complexes and determination of the absolute configuration of the isomerization products. Angew. Chem. Int. Ed. 40, 177–179 (2001).

    Article  CAS  Google Scholar 

  48. Gigg, R. & Warren, C. D. The allyl ether as a protecting group in carbohydrate chemistry. Part II. J. Chem. Soc. C 1968, 1903–1911 (1968).

    Article  Google Scholar 

  49. Seixas, R. S. G. R., Silva, A. M. S., Alkorta, I. & Elguero, J. An experimental NMR and computational study of 4-quinolones and related compounds. Monatsh. Chem. 142, 731–742 (2011).

    Article  CAS  Google Scholar 

  50. Bretschneider, T. et al. Vinylogous chain branching catalysed by a dedicated polyketide synthase module. Nature 502, 124–128 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Lim, S.-K. et al. Iso-migrastatin, migrastatin, and dorrigocin production in Streptomyces platensis NRRL 18993 is governed by a single biosynthetic machinery featuring an acyltransferase-less type I polyketide synthase. J. Biol. Chem. 284, 29746–29756 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hall, C., Wu, M. & Crane, F. L. Piericidin, a new inhibitor of mitochondrial electron transport. Biochem. Biophys. Res. Commun. 25, 373–377 (1966).

    Article  CAS  PubMed  Google Scholar 

  53. Liu, Q. et al. Elucidation of piericidin A1 biosynthetic locus revealed a thioesterase-dependent mechanism of α-pyridone ring formation. Chem. Biol. 19, 243–253 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Zhou, X. & Fenical, W. The unique chemistry and biology of the piericidins. J. Antibiot. 69, 582–593 (2016).

    Article  CAS  Google Scholar 

  55. Kunze, B., Jansen, R., Höfle, G. & Reichenbach, H. Ajudazols, new inhibitors of the mitochondrial electron transport from Chondromyces crocatus. Production, antimicrobial activity and mechanism of action. J. Antibiot. 57, 151–155 (2004).

    Article  CAS  Google Scholar 

  56. Lawrence, J. W., Darkin‐Rattray, S., Xie, F., Neims, A. H. & Rowe, T. C. 4‐Quinolones cause a selective loss of mitochondrial DNA from mouse L1210 leukemia cells. J. Cell. Biochem. 51, 165–174 (1993).

    Article  CAS  PubMed  Google Scholar 

  57. Lawrence, J. W., Claire, D. C., Weissig, V. & Rowe, T. C. Delayed cytotoxicity and cleavage of mitochondrial DNA in ciprofloxacin-treated mammalian cells. Mol. Pharmacol. 50, 1178–1188 (1996).

    CAS  PubMed  Google Scholar 

  58. Esnault, C., Roques, B. P., Jacquemin-Sablon, A. & Le Pecq, J. B. Effects of new antitumor bifunctional intercalators derived from 7H-pyridocarbazole on sensitive and resistant L1210 cells. Cancer Res. 44, 4355–4360 (1984).

    CAS  PubMed  Google Scholar 

  59. Tidd, D. M. & Paterson, A. R. P. A biochemical mechanism for the delayed cytotoxic reaction of 6-mercaptopurine. Cancer Res. 34, 738–746 (1974).

    CAS  PubMed  Google Scholar 

  60. Wotring, L. L. & Roti Roti, J. L. Thioguanine-induced S and G2 blocks and their significance to the mechanism of cytotoxicity. Cancer Res. 40, 1458–1462 (1980).

    CAS  PubMed  Google Scholar 

  61. Chen, C.-H. & Cheng, Y.-C. Delayed cytotoxicity and selective loss of mitochondrial DNA in cells treated with the anti-human immunodeficiency virus compound 2′,3′-dideoxycytidine. J. Biol. Chem. 264, 11934–11937 (1989).

    Article  CAS  PubMed  Google Scholar 

  62. Wakimoto, T., Egami, Y. & Abe, I. Calyculin: Nature's way of making the sponge-derived cytotoxin. Nat. Prod. Rep. 33, 751–760 (2016).

    Article  CAS  PubMed  Google Scholar 

  63. Kevbrin, V. et al. Natronospirillum operosum gen. nov., sp. nov., a haloalkaliphilic satellite isolated from decaying biomass of a laboratory culture of cyanobacterium Geitlerinema sp. and proposal of Natronospirillaceae fam. nov., Saccharospirillaceae fam. nov. and Gynuellaceae fam. nov. Int. J. Syst. Evol. Microbiol. 70, 511–521 (2020).

    Article  CAS  PubMed  Google Scholar 

  64. Mavrodi, O. V. et al. Rhizosphere microbial communities of Spartina alterniflora and Juncus roemerianus from restored and natural tidal marshes on Deer Island, Mississippi. Front. Microbiol. 9, 3049 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Lucena, T. et al. Marinomonas spartinae sp. nov., a novel species with plant-beneficial properties. Int. J. Syst. Evol. Microbiol. 66, 1686–1691 (2016).

    Article  CAS  PubMed  Google Scholar 

  66. Fidalgo, C. et al. Saccharospirillum correiae sp. nov., an endophytic bacterium isolated from the halophyte Halimione portulacoides. Int. J. Syst. Evol. Microbiol. 67, 2026–2030 (2017).

    Article  CAS  PubMed  Google Scholar 

  67. Edgar, R. C. MUSCLE : multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Greczmiel, U. et al. Sustained T follicular helper cell response is essential for control of chronic viral infection. Sci. Immunol. 2, eaam8686 (2017).

    Article  PubMed  Google Scholar 

  70. Battegay, M. et al. Quantification of lymphocytic choriomeningitis virus with an immunological focus assay in 24- or 96-well plates. J. Virol. Methods 33, 191–198 (1991).

    Article  CAS  PubMed  Google Scholar 

  71. Le Roux, F., Binesse, J., Saulnier, D. & Mazel, D. Construction of a Vibrio splendidus mutant lacking the metalloprotease gene vsm by use of a novel counterselectable suicide vector. Appl. Environ. Microbiol. 73, 777–784 (2007).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Y. R. Chung and D. Mavrodi for insightful discussions and D. Mazel for sharing plasmid pSW8197 with us. J.P. acknowledges funding by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement no. 742739), the Gordon and Betty Moore Foundation (#9204, https://doi.org/10.37807/GBMF9204) and the Swiss National Science Foundation (NRP72 ‘Antimicrobial Resistance’, 407240_167051). Y.Y. is supported by a Grant-in-Aid for Scientific Research on Innovative Areas (17H06411), the Japan Society for the Promotion of Science (JSPS). M.Y. and S.N. are supported in part by a JSPS Grant-in-Aid for Scientific Research (S) (19H05640).

Author information

Authors and Affiliations

Authors

Contributions

All authors devised the experiments. R.U. and S.L.-M. isolated and characterized natural products. P.S. prepared and characterized synthetic compounds. Y.L. and R.T.W. analysed NMR data and conducted calculations. S.L.-M., R.S., Y.Y., H.K., A.B., U.G., S.N., Y.H., M.Y., A.O. and S.M. performed biological assays. S.L.-M., A.B. and J.P. performed bioinformatic analysis. S.L.-M. and L.V. generated the mutant strain. R.U., S.L.-M., P.S., E.M.C. and J.P. wrote the paper, with contributions from all authors.

Corresponding authors

Correspondence to Erick M. Carreira or Jörn Piel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–65, Tables 1–12 and synthetic procedures.

Reporting Summary

Supplementary Data 1

Primary data underlying Supplementary Figs. 42, 43, 45, 46 and 47

Supplementary Video 1

Growth of 3Y1 cancer cells treated with DMSO. Growth of cells is not affected.

Supplementary Video 2

Growth of 3Y1 cancer cells treated with 1.8nM janustatin A (13). Cells grow normally for the first two days. After three days, janustatin-treated cells stop dividing and die in a synchronized fashion.

Supplementary Video 3

Growth of 3Y1 cancer cells treated with 0.34μM doxorubicin. Cells die on the first day of treatment.

Supplementary Video 4

Growth of HeLa cancer cells treated with 1.8nM janustatin A (13). Cells grow normally for the first two days. After three days, janustatin-treated cells stop dividing and die in a synchronized fashion.

Supplementary Video 5

Growth of HeLa cancer cells treated with DMSO. Growth of cells is not affected.

Supplementary Video 6

Growth of 3Y1 cancer cells treated with 3.6nM janustatin A′ (13′). Cells grow normally for the first two days. After three days, janustatin-treated cells stop dividing and die in a synchronized fashion.

Supplementary Video 7

Growth of 3Y1 cancer cells treated with 3.7nM janustatin B (14). Cells grow normally for the first two days.

Supplementary Video 8

Growth of 3Y1 cancer cells treated with 1.7μM doxorubicin. Cells die on the first day of treatment.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ueoka, R., Sondermann, P., Leopold-Messer, S. et al. Genome-based discovery and total synthesis of janustatins, potent cytotoxins from a plant-associated bacterium. Nat. Chem. 14, 1193–1201 (2022). https://doi.org/10.1038/s41557-022-01020-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-022-01020-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing