Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Synthesis of a low-valent Al4+ cluster cation salt

Abstract

Low-valent aluminium compounds are very reactive main-group species and have therefore been widely investigated. Since the isolation of a stable molecular Al(I) compound in 1991, [(AlCp*)4] (Cp* = [C5Me5]), a variety of highly reactive neutral or anionic low-valent aluminium complexes have been developed. By contrast, their cationic counterparts have remained difficult to access. Here, we report the synthesis of [Al(AlCp*)3]+[Al(ORF)4] (RF = C(CF3)3) through a simple metathesis reaction between [(AlCp*)4] and Li[Al(ORF)4]. Unexpectedly, the [Al(AlCp*)3]+ salt forms a dimer in the solid state and concentrated solutions. Addition of Lewis bases results in monomerization and coordination to the unique formal Al+ atom, giving [(L)xAl(AlCp*)3]+ salts where L is hexaphenylcarbodiphosphorane (x = 1), tetramethylethylenediamine (x = 1) or 4-dimethylaminopyridine (x = 3). The Al+–AlCp* bonds in the resulting [(L)xAl(AlCp*)3]+ cluster cations can be finely tuned between very strong (with no ligand L) to very weak and approaching isolated [Al(L)3]+ ions (when L is dimethylaminopyridine).

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Selected examples of Al(I) complexes.
Fig. 2: Synthesis and characterization of [Al(AlCp*)3]+[pf] (1).
Fig. 3: Decomposition of [Al(AlCp*)3]+[pf] (1).
Fig. 4: Reactivity towards Lewis bases.
Fig. 5: Bonding analysis of the metalloid clusters.

Data availability

X-ray crystallographic data are available free of charge from the Cambridge Crystallographic Data Centre (CCDC) under the reference numbers 2123471 (1), 2124880 (2), 2123536 (3), 2123485 (4) and 2123538 (5) via https://www.ccdc.cam.ac.uk/structures/. All other data supporting the findings are contained in the main text or the Supplementary Information. Source data are provided with this paper.

References

  1. Dohmeier, C., Robl, C., Tacke, M. & Schnöckel, H. The tetrameric aluminum(I) compound [{Al(η5-C5Me5)}4]. Angew. Chem. Int. Ed. 30, 564–565 (1991).

    Article  Google Scholar 

  2. Sitzmann, H., Lappert, M. F., Dohmeier, C., Üffing, C. & Schnöckel, H. Cyclopentadienylderivate von aluminium(I). J. Organomet. Chem. 561, 203–208 (1998).

    CAS  Article  Google Scholar 

  3. Power, P. P. Main-group elements as transition metals. Nature 463, 171–177 (2010).

    CAS  PubMed  Article  Google Scholar 

  4. Weetman, C. & Inoue, S. The road travelled: after main‐group elements as transition metals. ChemCatChem 10, 4213–4228 (2018).

    CAS  Article  Google Scholar 

  5. Chu, T. & Nikonov, G. I. Oxidative addition and reductive elimination at main-group element centers. Chem. Rev. 118, 3608–3680 (2018).

    CAS  PubMed  Article  Google Scholar 

  6. Yadav, S., Saha, S. & Sen, S. S. Compounds with low-valent p-block elements for small molecule activation and catalysis. ChemCatChem 8, 486–501 (2016).

    CAS  Article  Google Scholar 

  7. Hobson, K., Carmalt, C. J. & Bakewell, C. Recent advances in low oxidation state aluminium chemistry. Chem. Sci. 11, 6942–6956 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. Roesky, H. W. & Kumar, S. S. Chemistry of aluminium(I). Chem. Commun. (2005).

  9. Weetman, C., Xu, H. & Inoue, S. in Encyclopedia of Inorganic and Bioinorganic Chemistry (ed. Scott, R. A.) 1–20 (Wiley, 2011).

  10. Schnepf, A. & Schnöckel, H. Metalloid aluminum and gallium clusters: element modifications on the molecular scale? Angew. Chem. Int. Ed. 41, 3532–3554 (2002).

    CAS  Article  Google Scholar 

  11. Schnöckel, H. Metalloid Al- and Ga-clusters: a novel dimension in organometallic chemistry linking the molecular and the solid-state areas? Dalton Trans. (2005).

  12. Ecker, A., Weckert, E. & Schnöckel, H. Synthesis and structural characterization of an AI77 cluster. Nature 387, 379–381 (1997).

    CAS  Article  Google Scholar 

  13. Vollet, J., Hartig, J. R. & Schnöckel, H. Al50C120H180: a pseudofullerene shell of 60 carbon atoms and 60 methyl groups protecting a cluster core of 50 aluminum atoms. Angew. Chem. Int. Ed. 43, 3186–3189 (2004).

    CAS  Article  Google Scholar 

  14. Cui, C. et al. Synthesis and structure of a monomeric aluminum(I) compound [{HC(CMeNAr)2}Al] (Ar=2,6–iPr2C6H3): a stable aluminum analogue of a carbene. Angew. Chem. Int. Ed. 39, 4274–4276 (2000).

    CAS  Article  Google Scholar 

  15. Hofmann, A., Tröster, T., Kupfer, T. & Braunschweig, H. Monomeric Cp3tAl(i): synthesis, reactivity, and the concept of valence isomerism. Chem. Sci. 10, 3421–3428 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. Hicks, J., Vasko, P., Goicoechea, J. M. & Aldridge, S. The aluminyl anion: a new generation of aluminium nucleophile. Angew. Chem. Int. Ed. 60, 1702–1713 (2021).

    CAS  Article  Google Scholar 

  17. Hicks, J., Vasko, P., Goicoechea, J. M. & Aldridge, S. Synthesis, structure and reaction chemistry of a nucleophilic aluminyl anion. Nature 557, 92–95 (2018).

    CAS  PubMed  Article  Google Scholar 

  18. Roy, M. M. D. et al. Probing the extremes of covalency in M–Al bonds: lithium and zinc aluminyl compounds. Angew. Chem. Int. Ed. 60, 22301–22306 (2021).

    CAS  Article  Google Scholar 

  19. Hicks, J., Vasko, P., Goicoechea, J. M. & Aldridge, S. Reversible, room-temperature C–C bond activation of benzene by an isolable metal complex. J. Am. Chem. Soc. 141, 11000–11003 (2019).

    CAS  PubMed  Article  Google Scholar 

  20. Schwamm, R. J., Anker, M. D., Lein, M. & Coles, M. P. Reduction vs. addition: the reaction of an aluminyl anion with 1,3,5,7-cyclooctatetraene. Angew. Chem. Int. Ed. 58, 1489–1493 (2019).

    CAS  Article  Google Scholar 

  21. Schwamm, R. J. et al. A stable calcium alumanyl. Angew. Chem. Int. Ed. 59, 3928–3932 (2020).

    CAS  Article  Google Scholar 

  22. Grams, S., Eyselein, J., Langer, J., Färber, C. & Harder, S. Boosting low-valent aluminum(I) reactivity with a potassium reagent. Angew. Chem. Int. Ed. 59, 15982–15986 (2020).

    CAS  Article  Google Scholar 

  23. Kurumada, S., Takamori, S. & Yamashita, M. An alkyl-substituted aluminium anion with strong basicity and nucleophilicity. Nat. Chem. 12, 36–39 (2020).

    CAS  PubMed  Article  Google Scholar 

  24. Koshino, K. & Kinjo, R. Construction of σ-aromatic AlB2 ring via borane coupling with a dicoordinate cyclic (alkyl)(amino)aluminyl anion. J. Am. Chem. Soc. 142, 9057–9062 (2020).

    CAS  PubMed  Article  Google Scholar 

  25. Roy, M. M. D., Heilmann, A., Ellwanger, M. A. & Aldridge, S. Generation of a π-bonded isomer of P44− by aluminyl reduction of white phosphorus and its ammonolysis to PH3. Angew. Chem. Int. Ed. 60, 26550–26554 (2021).

    CAS  Article  Google Scholar 

  26. Anker, M. D., McMullin, C. L., Rajabi, N. A. & Coles, M. P. Carbon–carbon bond forming reactions promoted by aluminyl and alumoxane anions: introducing the ethenetetraolate ligand. Angew. Chem. Int. Ed. 59, 12806–12810 (2020).

    CAS  Article  Google Scholar 

  27. Evans, M. J., Anker, M. D., McMullin, C. L., Neale, S. E. & Coles, M. P. Dihydrogen activation by lithium- and sodium-aluminyls. Angew. Chem. Int. Ed. 60, 22289–22292 (2021).

    CAS  Article  Google Scholar 

  28. Koshino, K. & Kinjo, R. Fragmentation of white phosphorus by a cyclic (alkyl)(amino)alumanyl anion. Organometallics 39, 4183–4186 (2020).

    CAS  Article  Google Scholar 

  29. Kurumada, S., Sugita, K., Nakano, R. & Yamashita, M. A meta-selective C–H alumination of mono-substituted benzene by using an alkyl-substituted Al anion through hydride-eliminating SN Ar reaction. Angew. Chem. Int. Ed. 59, 20381–20384 (2020).

    CAS  Article  Google Scholar 

  30. Queen, J. D., Lehmann, A., Fettinger, J. C., Tuononen, H. M. & Power, P. P. The monomeric alanediyl:AlAriPr8 (AriPr8 = C6H-2,6-(C6H2-2,4,6-Pri3)2-3,5-Pri2): an organoaluminum(I) compound with a one-coordinate aluminum atom. J. Am. Chem. Soc. 142, 20554–20559 (2020).

    CAS  PubMed  Article  Google Scholar 

  31. Hinz, A. & Müller, M. P. Attempted reduction of a carbazolyl-diiodoalane. Chem. Commun. 57, 12532–12535 (2021).

    CAS  Article  Google Scholar 

  32. Zhang, X. & Liu, L. L. A free aluminylene with diverse σ-donating and doubly σ/π-accepting ligand features for transition metals. Angew. Chem. Int. Ed. 60, 27062–27069 (2021).

    CAS  Article  Google Scholar 

  33. Zhang, X. & Liu, L. L. Modulating the frontier orbitals of an aluminylene for facile dearomatization of inert arenes. Angew. Chem. Int. Ed. (2022).

  34. Queen, J. D., Irvankoski, S., Fettinger, J. C., Tuononen, H. M. & Power, P. P. A monomeric aluminum imide (iminoalane) with Al–N triple-bonding: bonding analysis and dispersion energy stabilization. J. Am. Chem. Soc. 143, 6351–6356 (2021).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. Klemp, C., Stößer, S., Krossing, I. & Schnöckel, H. Al5Br75 THF—the first saltlike aluminum subhalide. Angew. Chem. Int. Ed. 39, 3691–3694 (2000).

    CAS  Article  Google Scholar 

  36. Franz, D. & Inoue, S. Cationic complexes of boron and aluminum: an early 21st century viewpoint. Chem. Eur. J. 25, 2898–2926 (2019).

    CAS  PubMed  Google Scholar 

  37. Dabringhaus, P., Barthélemy, A. & Krossing, I. The coordination chemistry and clustering of subvalent Ga+ and In+ upon addition of σ‐donor ligands. Z. Anorg. Allg. Chem. (2021).

  38. Glootz, K. et al. Why do five Ga+ cations form a ligand-stabilized Ga55+ pentagon and how does a 5:1 salt pack in the solid state? Angew. Chem. Int. Ed. 58, 14162–14166 (2019).

    CAS  Article  Google Scholar 

  39. Higelin, A., Keller, S., Göhringer, C., Jones, C. & Krossing, I. Unusual tilted carbene coordination in carbene complexes of gallium(I) and indium(I). Angew. Chem. Int. Ed. 52, 4941–4944 (2013).

    CAS  Article  Google Scholar 

  40. Higelin, A., Sachs, U., Keller, S. & Krossing, I. Univalent gallium and indium phosphane complexes: from pyramidal M(PPh3)3(+) to carbene-analogous bent M(PtBu3)2(+) (M=Ga, In) complexes. Chem. Eur. J. 18, 10029–10034 (2012).

    CAS  PubMed  Article  Google Scholar 

  41. Lichtenthaler, M. R. et al. Cationic cluster formation versus disproportionation of low-valent indium and gallium complexes of 2,2′-bipyridine. Nat. Commun. 6, 8288 (2015).

    CAS  PubMed  Article  Google Scholar 

  42. Wehmschulte, R. J., Peverati, R. & Powell, D. R. Convenient access to gallium(I) cations through hydrogen elimination from cationic gallium(III) hydrides. Inorg. Chem. 58, 12441–12445 (2019).

    CAS  PubMed  Article  Google Scholar 

  43. Inomata, K., Watanabe, T., Miyazaki, Y. & Tobita, H. Insertion of a cationic metallogermylene into E–H bonds (E = H, B, Si). J. Am. Chem. Soc. 137, 11935–11937 (2015).

    CAS  PubMed  Article  Google Scholar 

  44. Morris, L. J., Carpentier, A., Maron, L. & Okuda, J. Reductive elimination of [AlH2]+ from a cationic Ga–Al dihydride. Chem. Commun. 57, 9454–9457 (2021).

    CAS  Article  Google Scholar 

  45. Ganesamoorthy, C. et al. Reductive elimination: a pathway to low-valent aluminium species. Chem. Commun. 49, 2858–2860 (2013).

    CAS  Article  Google Scholar 

  46. Purath, A. & Schnöckel, H. Tetrakis[tris(trimethylsilyl)silylaluminium(I)] Al4[Si(SiMe3)3]4—eine siliziumreicheVerbindung mit zentralem tetraedrischem Al4-Kern. J. Organomet. Chem. 579, 373–375 (1999).

    CAS  Article  Google Scholar 

  47. Schnepf, A., Köppe, R. & Schnöckel, H. A Ga8R6 cluster as an ideal model for a metal–metal bond? Angew. Chem. Int. Ed. 40, 1241–1243 (2001).

    CAS  Article  Google Scholar 

  48. Purath, A. et al. Synthesis and structure of a neutral SiAl14 cluster. J. Am. Chem. Soc. 122, 6955–6959 (2000).

    CAS  Article  Google Scholar 

  49. Schnöckel, H. Decamethylaluminocenium, a π‐stabilized R2Al+ cation. Angew. Chem. Int. Ed. 32, 1655–1657 (1993).

    Article  Google Scholar 

  50. Buchin, B., Gemel, C., Cadenbach, T., Schmid, R. & Fischer, R. A. The Ga2(C5Me5)+ ion: bipyramidal double-cone structure and weakly coordinated, monovalent Ga+. Angew. Chem. Int. Ed. 45, 1074–1076 (2006).

    CAS  Article  Google Scholar 

  51. Jones, J. N., Macdonald, C. L., Gorden, J. D. & Cowley, A. H. Use of a smaller counterion results in an ‘inverse sandwich’ diindium cation. J. Organomet. Chem. 666, 3–5 (2003).

    CAS  Article  Google Scholar 

  52. Mellerup, S. K. et al. Lewis-base stabilization of the parent Al(I) hydride under ambient conditions. J. Am. Chem. Soc. 141, 16954–16960 (2019).

    CAS  PubMed  Article  Google Scholar 

  53. Petz, W., Kutschera, C., Tschan, S., Weller, F. & Neumüller, B. Umsetzung von Ph3P=C=PPh3 mit Lewis-säuren von hauptgruppenelementen; synthesen, strukturen und reaktionen der additionsverbindungen [Br3Al{C(PPh3)2}] und [Me3In{C(PPh3)2}]. Z. Anorg. Allg. Chem. 629, 1235–1244 (2003).

    CAS  Article  Google Scholar 

  54. Quinlivan, P. J., Shlian, D. G., Amemiya, E. & Parkin, G. Reactivity of the carbodiphosphorane, (Ph3P)2C, towards main group metal alkyl compounds: coordination and cyclometalation. Dalton Trans. 48, 9139–9151 (2019).

    CAS  PubMed  Article  Google Scholar 

  55. Vranka, R. G. & Amma, E. L. Crystal structure of trimethylaluminum. J. Am. Chem. Soc. 89, 3121–3126 (1967).

    CAS  Article  Google Scholar 

  56. Thermodynamics computed at bp86-d3bj/def2-svp level of DFT. The breakup of [(AlCp*)4] into an AlCp* monomer and an [(AlCp*)3] trimer was computed to ΔG01,2-DFB = 150 kJ mol-1.

  57. Zhao, L., Hermann, M., Schwarz, W. H. E. & Frenking, G. The Lewis electron-pair bonding model: modern energy decomposition analysis. Nat. Rev. Chem. 3, 48–63 (2019).

    CAS  Article  Google Scholar 

  58. Roesky, H. W. & Kennepohl, D. K. Experiments in Green and Sustainable Chemistry (Wiley-VCH, 2009).

  59. Gruber, M., Bauer, W., Maid, H., Schöll, K. & Tykwinski, R. R. Synthetic and NMR studies on hexaphenylcarbodiphosphorane (Ph3PCPPh3). Inorg. Chim. Acta 468, 152–158 (2017).

    CAS  Article  Google Scholar 

  60. Pranckevicius, C., Iovan, D. A. & Stephan, D. W. Three and four coordinate Fe carbodiphosphorane complexes. Dalton Trans. 45, 16820–16825 (2016).

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

We thank the Fonds of the Chemical Industry for a fellowship for P.D., the German Research Foundation for the funding of project KR2046/35-1 and the Albert Ludwig University of Freiburg for supporting the work. We thank M. Schmitt and B. Butschke for fruitful dialogue and advice on quantum-chemical calculations and single-crystal X-ray diffraction crystallography. We acknowledge T. Ludwig and M. Daub for measurement of powder X-ray diffraction and H. Scherer and F. Bitgül for measurement of NMR spectra. Furthermore, we acknowledge support by the state of Baden-Württemberg through bwHPC and the German Research Foundation through grant no. INST 40/575-1 FUGG (JUSTUS 2 cluster).

Author information

Authors and Affiliations

Authors

Contributions

P.D. and J.W. planned and carried out all experiments and analysed the data. P.D. carried out the single-crystal X-ray diffraction measurements and the mass spectrometry measurements and conducted the computational investigations. P.D. and I.K. wrote the manuscript.

Corresponding author

Correspondence to Ingo Krossing.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Sakya Sen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–94, Tables 1–40, Discussion, all coordinates of optimized structures listed along with vibrational frequencies and refs. 1–56.

Supplementary Data 1

Crystallographic data for compound 1, CCDC 2123471.

Supplementary Data 2

Crystallographic data for compound 2, CCDC 2124880.

Supplementary Data 3

Crystallographic data for compound 3, CCDC 2123536.

Supplementary Data 4

Crystallographic data for compound 4, CCDC 2123485.

Supplementary Data 5

Crystallographic data for compound 5, CCDC 2123538.

Supplementary Data 6

Source data of Supplementary Fig. 76.

Supplementary Data 7

Source data of Supplementary Fig. 77.

Source data

Source Data Fig. 2c

NMR data for Fig. 2c.

Source Data Fig. 2f

UVVIS data for figure 2f.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dabringhaus, P., Willrett, J. & Krossing, I. Synthesis of a low-valent Al4+ cluster cation salt. Nat. Chem. 14, 1151–1157 (2022). https://doi.org/10.1038/s41557-022-01000-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-022-01000-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing