
Articles
https://doi.org/10.1038/s41557-022-00991-4

Institute of Organic Chemistry, University of Vienna, Vienna, Austria. ✉e-mail: nuno.maulide@univie.ac.at

Contemporary organic synthesis aims to further our under-
standing of nature by developing laboratory routes to mol-
ecules that mimic those produced by living organisms 

with ever-increasing levels of complexity. The ideal synthesis of 
a target compound is most often described in terms of the num-
ber of synthetic operations required to reach said product—with 
ideality lying as close to one single step as possible1. Due to their 
modular nature and their ability to rapidly generate multiple new 
bonds, multi-component reactions often equate with highly effi-
cient syntheses2,3; however, it is notoriously difficult to design 
multi-component reactions leading to valuable targets. In particular,  

we believe large untapped potential exists in dynamically assembled 
complexes, formed under equilibrium, that preorganise multi- 
component arrays of reactants (Fig. 1a). Converting these com-
plexes into templates for the deployment of catalytic methods offers 
a challenging but potentially rewarding avenue towards highly com-
plex products4,5.

Alkaloids remain a highly prized and elaborate subset of natu-
ral products and drug candidates6. Azabicyclic alkaloids, structures 
where two fused rings share a nitrogen atom, are prevalent through-
out nature with potent and diverse biological activities (Fig. 1b)7. 
Indeed, over 1,800 secondary metabolites contain the indolizidine 
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The rapid assembly of complex scaffolds in a single step from simple precursors identifies as an ideal reaction in terms of effi-
ciency and sustainability. Indeed, the direct single-step synthesis of complex alkaloid frameworks remains an unresolved prob-
lem at the heart of organic chemistry in spite of the tremendous progress of the discipline. Herein, we present a broad strategy 
in which dynamically assembled ternary complexes are converted into valuable azabicyclic scaffolds based on the concept of 
inverse hydride shuttle catalysis. The ternary complexes are readily constructed in situ from three simple precursors and enable 
a highly modular installation of various substitution patterns. Upon subjection to a unique dual-catalytic system, the transient 
intermediates undergo an unusual hydride shuttle process that is initiated by a hydride donation event. Furthermore, we show 
that, in combination with asymmetric organocatalysis, the product alkaloid frameworks are obtained in excellent optical purity.
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Fig. 1 | Harnessing dynamically formed ternary complexes through inverse hydride shuttle catalysis. a, Dynamically assembled complexes with 
unexploited synthetic potential: reversible preorganisation into ternary complexes and interrogation of routes able to convert the ternary complex 
directly into a complex scaffold. b, Azabicycles in natural products and pharmaceuticals. HCV, hepatitis C virus; GABA, γ-aminobutyric acid receptor. 
c, Azabicycles are formed in a single step, enabled by inverse hydride shuttle catalysis starting from ubiquitous starting materials. Fleeting cyclobutene 
intermediates are converted into complex frameworks with up to 99% yield, forming up to four new stereocentres with excellent enantioselectivity  
(up to 99% e.e.). EWG, electron-withdrawing group.
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core, and more than 2,000 naturally occurring pyrrolizidine and 
quinolizidine derivatives are known8. While synthetic chemistry has 
risen to the challenge of preparing such targets in the laboratory, 
their complexity still renders such efforts as multistep endeavours9–12.

Herein, we report the one-step, multi-component conversion of 
bulk chemicals (cyclic amines, electron-deficient olefins and alde-
hydes) into complex bicyclic alkaloid scaffolds via inverse hydride 
shuttle catalysis (so termed because it is initiated by a hydride dona-
tion event rather than an abstraction event)13–16. This asymmetric 
transformation harnesses dynamically formed complexes that 
assemble the precursors and forges valuable products carrying up to 

four new stereocentres with excellent enantio- and diasteroselectivi-
ties, in a synthetically ideal manner (Fig. 1c).

results and discussion
Interested in leveraging skeletal reorganisation of reversibly assem-
bled, dynamic complexes formed by a multi-component equilib-
rium process, we turned to the reversible addition of enamines to 
Michael acceptors, known to transiently generate fleeting donor–
acceptor cyclobutanes17–20, and explored a range of sterically con-
strained, boron-based Lewis acids to evoke a formal ring expansion 
(Table 1). Interestingly, B(C6F5)3 1a—a commonly employed Lewis  

Table 1 | rapid synthesis of alkaloid-like azabicycles by inverse hydride shuttle catalysis
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reaction conditions: CH2Cl2, 25 °C, 0.5 to 3 h, then slow addition over 30 min to 1c (10 mol%), 1c–H (25 mol%), followed by stirring of the reaction mixture at 25 °C for 1 h. Products were formed as single 
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acid21–24—failed to provide the desired product, returning only unre-
acted starting material. At the opposite end of the Lewis acidity scale, 
Ph3B 1e similarly did not lead to the formation of any observable 
product. Given that boron-based Lewis acids at both ends of the Lewis 
acidity scale had given poor results, it was clear that careful tuning of 
the electronic properties of the Lewis acid was required. We thus found 
that stoichiometric amounts of tris-(2,6-difluorophenyl)borane 1c  
(refs. 25,26) can promote the desired skeletal rearrangement. Converting 
this process into a catalytic variant (Supplementary Section 2 for 
details) required the combination of catalytic quantities of both Lewis 
acid 1c and its preformed tetraalkylammonium hydride 1c–H.

Several complex azabicyclic structures are accessible through 
this transformation. As shown in Table 1, bicyclo[4.3.0], –[4.4.0] 
and –[5.4.0] systems can be prepared in a single step, affording the 

products as single diastereomers featuring three contiguous s tereo-
genic centres (5a–5c). The use of fused-ring reactants (5d and 5e), 
as well as the introduction of additional substituents, allows a rapid 
increase in the complexity of these alkaloid-like products (5f and 5g).  
Acyclic secondary amines were also amenable to this method, lead-
ing to multi-substituted piperidine derivatives (5h). While the use 
of linear aldehydes enables the diastereospecific formation of azabi-
cyclic cores carrying an additional stereogenic centre (5k), employ-
ing cycloalkanecarbaldehydes readily affords spirocyclic structures 
(5l). We were pleased to find that the efficiency of the reaction is 
not adversely affected by the electronic nature of the nitroolefin: 
electron-donating (5n–5p) or electron-withdrawing (5q–5t) groups 
are well tolerated, as are heteroaromatics (5u–5w) and alkenyl (5y) 
and alkynyl (5z) substituents.
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Fig. 2 | extensions of the inverse hydride shuttle concept: enantioselective synthesis, additional substrate class and mechanistic proposal.  
a, Telescoped and enantioselective approaches for the synthesis of indolizidine building blocks. Telescoped approach starting directly from amine, 
aldehyde and nitroolefin. Enantioselective access to the azabicyclic frameworks is based on an organocatalysed enantioselective michael addition prior 
to cyclobutane formation. b, Alternative michael acceptors: synthesis of indolizidine derivatives bearing a trifluoromethyl ketone. c, Proposed mechanism 
for the conversion of enamine–michael acceptor complexes, formed through dynamic assembly, into indolizidines via inverse hydride shuttle catalysis 
featuring both a Lewis acid and its respective hydride. LA, Lewis acid. Supplementary Sections 4.5, 4.6 and 4.7 for details. Products were formed as single 
diastereomers, unless stated otherwise.
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Performing the reaction in a telescoped fashion is also possible 
(Fig. 2a). To this effect, a sequence of (1) enamine condensation, 
(2) cyclobutane formation and (3) hydride shuttle ring reorganisa-
tion can be carried out in a single step, leading to product yields 
comparable to those of the standard procedure. Furthermore, a 
change in the order of events enables an enantioselective approach. 
As also shown in Fig. 2a, if a catalytic enantioselective Michael addi-
tion first couples the aldehyde and the Michael acceptor, the events 
of cyclobutane formation and the hydride shuttle deliver virtually 
enantiopure azabicyclic products ((+)-5a–(+)-5r).

The range of electron-deficient olefins also encompasses trifluo-
romethyl ketones (6), showcasing the potential breadth of the con-
cept presented herein. When used in combination with enamine 2,  
such substrates elicit transient formation of a dihydropyran  
(8; Supplementary Fig. 2) which is then cleanly converted into azab-
icycles 7 in high yields upon addition to the catalyst (Fig. 2b).

Our mechanistic proposal is outlined in Fig. 2c. Depending on 
the nature of the two reactants, either a cyclobutane or a dihydro-
pyran is transiently formed (detected by 1H NMR; Supplementary 
Sections 4.4.2 and 4.6.10 for details). These transient species have 
been shown to reside in dynamic equilibrium with their respec-
tive precursors via open, zwitterionic forms Int-1 (refs. 18,19). When 
exposed to the catalytic system, the iminium moiety is swiftly 
reduced by hydride species 1c–H to form tertiary amine Int-3. 
Hydride abstraction at the sterically most accessible position affords 
the formally reorganised iminium ion Int-4 while regenerating 
1c–H (refs. 27–30). Subsequently, Int-4 spontaneously collapses to the 
product, releasing 1c, thereby closing the dual-catalytic cycle.

The rapidly assembled alkaloid cores can be easily converted into 
a variety of natural-product-like scaffolds (Fig. 3). Other ring archi-
tectures such as the trachelanthamidine framework (substructure 
for over 250 alkaloids31) are accessible by ring contraction (9) lead-
ing to the corresponding pyrrolizidine core. In addition, a variety 
of naturally occurring substituents are introduced with high regio- 
and stereoselectivity adjacent to the bicyclic nitrogen atom via 
the Polonovski–Potier reaction (10, 11 and 14; Fig. 3). Moreover, 

reduction of 5b and 7d leads to frameworks related to epiquinamide 
and lupinine, respectively.

In summary, we have developed a modular protocol for the 
one-step synthesis of complex frameworks deploying inverse 
hydride shuttle catalysis onto dynamically assembled complexes 
generated at equilibrium32,33. The method results in a variety of 
alkaloid-like products formed in an enantio- and diastereoselec-
tive manner. We believe that the approach presented herein has the 
potential to revolutionise the design of multi-component reactions, 
facilitating the breakthrough advances in biology and medicine that 
modern society relies on.
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Methods
Caution statement when working with LAH in large scale. Quenching of 
reactions with LiAlH4 must not be performed using hydrochloric acid. In this case 
we recommend cooling the reaction mixture to 0 °C and quenching potentially 
unreacted LAH by slow addition of an excess of ethyl acetate.

General procedure for the inverse hydride shuttle. To a 4.00 ml vial  
containing enamine 2 (250 µmol, 1.00 equiv.) was added a solution of  
nitrostyrene 3 in CH2Cl2 (0.70 ml of a 2.8 M solution, 250 µmol, 1.00 equiv.)  
at room temperature (23 °C) and the solution was stirred for 1–3 h. Over the  
course of 20 min, the solution was added to a solution of Lewis acid 1c (10 mol%) 
and its hydride 1c–H (25 mol%) in CH2Cl2 (200 µl) using a syringe pump.  
After the addition was complete, the reaction was stirred for 1 h at room 
temperature before the solvent was removed under reduced pressure.  
Analysis of the crude mixture by 1H NMR showed the formation of a single 
diastereomer unless stated otherwise. The residue was purified by flash column 
chromatography (heptane/CH2Cl2 1:1 grading to pure CH2Cl2, unless stated 
otherwise) to afford the final product.
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