Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Challenges and opportunities in achieving the full potential of droplet interface bilayers

Abstract

Model membranes can be used to elucidate the intricacies of the chemical processes that occur in cell membranes, but the perfectly biomimetic, yet bespoke, model membrane has yet to be built. Droplet interface bilayers are a new type of model membrane able to mimic some features of real cell membranes better than traditional models, such as liposomes and black lipid membranes. In this Perspective, we discuss recent work in the field that is starting to showcase the potential of these model membranes to enable the quantification of membrane processes, such as the behaviour of protein transporters and the prediction of in vivo drug movement, and their use as scaffolds for electrophysiological measurements. We also highlight the challenges that remain to enable droplet interface bilayers to achieve their full potential as artificial cells, and as biological analytical platforms to quantify molecular transport.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Formation and structure of DIBs.
Fig. 2: DIBs to study molecular transport.
Fig. 3: Automated DIB assays for drug-transport applications.

References

  1. Hwang, W. L., Holden, M. A., White, S. & Bayley, H. Electrical behavior of droplet interface bilayer networks: experimental analysis and modeling. J. Am. Chem. Soc. 129, 11854–11864 (2007).

    CAS  PubMed  Article  Google Scholar 

  2. Ginzberg, M. B., Kafri, R. & Kirschner, M. On being the right (cell) size. Science 348, 1245075 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  3. Korner, J. L., Stephenson, E. B. & Elvira, K. S. A bespoke microfluidic pharmacokinetic compartment model for drug absorption using artificial cell membranes. Lab Chip 20, 1898–1906 (2020).

    CAS  PubMed  Article  Google Scholar 

  4. Hwang, W. L., Chen, M., Cronin, B., Holden, M. A. & Bayley, H. Asymmetric droplet interface bilayers. J. Am. Chem. Soc. 130, 5878–5879 (2008).

    CAS  PubMed  Article  Google Scholar 

  5. Stephenson, E. B. & Elvira, K. S. Biomimetic artificial cells to model the effect of membrane asymmetry on chemoresistance. Chem. Commun. 57, 6534–6537 (2021).

    CAS  Article  Google Scholar 

  6. Barlow, N. E. et al. Measuring bilayer surface energy and curvature in asymmetric droplet interface bilayers. J. R. Soc. Interface 15, 20180610 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. Malmstadt, N., Nash, M. A., Purnell, R. F. & Schmidt, J. J. Automated formation of lipid-bilayer membranes in a microfluidic device. Nano Lett. 6, 1961–1965 (2006).

    CAS  PubMed  Article  Google Scholar 

  8. Sarles, S. A. & Leo, D. J. Tailored current–voltage relationships of droplet-interface bilayers using biomolecules and external feedback control. J. Intell. Mater. Syst. Struct. 20, 1233–1247 (2009).

    CAS  Article  Google Scholar 

  9. Aghdaei, S., Sandison, M. E., Zagnoni, M., Green, N. G. & Morgan, H. Formation of artificial lipid bilayers using droplet dielectrophoresis. Lab Chip 8, 1617 (2008).

    CAS  PubMed  Article  Google Scholar 

  10. Holden, M. A., Needham, D. & Bayley, H. Functional bionetworks from nanoliter water droplets. J. Am. Chem. Soc. 129, 8650–8655 (2007).

    CAS  PubMed  Article  Google Scholar 

  11. Renner, S., Geltinger, S. & Simmel, F. C. Nanopore translocation and force spectroscopy experiments in microemulsion droplets. Small 6, 190–194 (2010).

    CAS  PubMed  Article  Google Scholar 

  12. Poulos, J. L., Nelson, W. C., Jeon, T.-J., Kim, C.-J. & Schmidt, J. J. Electrowetting on dielectric-based microfluidics for integrated lipid bilayer formation and measurement. Appl. Phys. Lett. 95, 013706 (2009).

    Article  CAS  Google Scholar 

  13. Creasy, M. A. & Leo, D. J. Non-invasive measurement techniques for measuring properties of droplet interface bilayers. Smart Mater. Struct. 19, 094016 (2010).

    Article  CAS  Google Scholar 

  14. Sarles, S. A. & Leo, D. J. Physical encapsulation of droplet interface bilayers for durable, portable biomolecular networks. Lab Chip 10, 710–717 (2010).

    CAS  PubMed  Article  Google Scholar 

  15. Sarles, S. A. & Leo, D. J. Regulated attachment method for reconstituting lipid bilayers of prescribed size within flexible substrates. Anal. Chem. 82, 959–966 (2010).

    CAS  PubMed  Article  Google Scholar 

  16. Punnamaraju, S. & Steckl, A. J. Voltage control of droplet interface bilayer lipid membrane dimensions. Langmuir 27, 618–626 (2011).

    CAS  PubMed  Article  Google Scholar 

  17. Syeda, R., Holden, M. A., Hwang, W. L. & Bayley, H. Screening blockers against a potassium channel with a droplet interface bilayer array. J. Am. Chem. Soc. 130, 15543–15548 (2008).

    CAS  PubMed  Article  Google Scholar 

  18. Bayley, H. et al. Droplet interface bilayers. Mol. Biosyst. 4, 1191–1208 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. Huang, J., Lein, M., Gunderson, C. & Holden, M. A. Direct quantitation of peptide-mediated protein transport across a droplet-interface bilayer. J. Am. Chem. Soc. 133, 15818–15821 (2011).

    CAS  PubMed  Article  Google Scholar 

  20. Nisisako, T., Portonovo, S. A. & Schmidt, J. J. Microfluidic passive permeability assay using nanoliter droplet interface lipid bilayers. Analyst 138, 6793–6800 (2013).

    CAS  PubMed  Article  Google Scholar 

  21. Findlay, H. E., Harris, N. J. & Booth, P. J. In vitro synthesis of a major facilitator transporter for specific active transport across droplet interface bilayers. Sci. Rep. 6, 39349 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. Barriga, H. M. G. et al. Droplet interface bilayer reconstitution and activity measurement of the mechanosensitive channel of large conductance from Escherichia coli. J. R. Soc. Interface 11, 20140404 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  23. Najem, J. S. et al. Multifunctional, micropipette-based method for incorporation and stimulation of bacterial mechanosensitive ion channels in droplet interface bilayers. J. Vis. Exp. 105, e53362 (2015).

    Google Scholar 

  24. El-Beyrouthy, J., Makhoul-Mansour, M. M., Taylor, G., Sarles, S. A. & Freeman, E. C. A new approach for investigating the response of lipid membranes to electrocompression by coupling droplet mechanics and membrane biophysics. J. R. Soc. Interface 16, 20190652 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. Zhang, Y., Bracken, H., Woolhead, C. & Zagnoni, M. Functionalisation of human chloride intracellular ion channels in microfluidic droplet-interface-bilayers. Biosens. Bioelectron. 150, 111920 (2020).

    CAS  PubMed  Article  Google Scholar 

  26. Stanley, C. E. et al. A microfluidic approach for high-throughput droplet interface bilayer (DIB) formation. Chem. Commun. 46, 1620–1622 (2010).

    CAS  Article  Google Scholar 

  27. Carreras, P., Law, R. V., Brooks, N., Seddon, J. M. & Ces, O. Microfluidic generation of droplet interface bilayer networks incorporating real-time size sorting in linear and non-linear configurations. Biomicrofluidics 8, 054113 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. Elani, Y., Casadevall i Solvas, X., Edel, J. B., Law, R. V. & Ces, O. Microfluidic generation of encapsulated droplet interface bilayer networks (multisomes) and their use as cell-like reactors. Chem. Commun. 52, 5961–5964 (2016).

    CAS  Article  Google Scholar 

  29. Mueller, P., Rudin, D. O., Ti Tien, H. & Wescott, W. C. Reconstitution of cell membrane structure in vitro and its transformation into an excitable system. Nature 194, 979–980 (1962).

    CAS  PubMed  Article  Google Scholar 

  30. White, S. H. in Ion Channel Reconstitution (ed. Miller, C.) 3–35 (Springer US, 1986).

  31. Oiki, S. in Patch Clamp Techniques: From Beginning to Advanced Protocols (ed. Okada, Y.) 229–275 (Springer Japan, 2012).

  32. Peetla, C., Stine, A. & Labhasetwar, V. Biophysical interactions with model lipid membranes: applications in drug discovery and drug delivery. Mol. Pharm. 6, 1264–1276 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. Elani, Y., deMello, A. J., Niu, X. & Ces, O. Novel technologies for the formation of 2-D and 3-D droplet interface bilayer networks. Lab Chip 12, 3514–3520 (2012).

    CAS  PubMed  Article  Google Scholar 

  34. Carreras, P. et al. A microfluidic platform for size-dependent generation of droplet interface bilayer networks on rails. Biomicrofluidics 9, 064121 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. Nguyen, M.-A., Srijanto, B., Collier, C. P., Retterer, S. T. & Sarles, S. A. Hydrodynamic trapping for rapid assembly and in situ electrical characterization of droplet interface bilayer arrays. Lab Chip 16, 3576–3588 (2016).

    CAS  PubMed  Article  Google Scholar 

  36. Czekalska, M. A. et al. A droplet microfluidic system for sequential generation of lipid bilayers and transmembrane electrical recordings. Lab Chip 15, 541–548 (2015).

    CAS  PubMed  Article  Google Scholar 

  37. Schlicht, B. & Zagnoni, M. Droplet-interface-bilayer assays in microfluidic passive networks. Sci. Rep. 5, 9951 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. Taylor, G. et al. Electrophysiological interrogation of asymmetric droplet interface bilayers reveals surface-bound alamethicin induces lipid flip-flop. Biochim. Biophys. Acta Biomembr. 1861, 335–343 (2019).

    CAS  PubMed  Article  Google Scholar 

  39. Tamaddoni, N., Taylor, G., Hepburn, T., Kilbey, S. M. & Sarles, S. A. Reversible, voltage-activated formation of biomimetic membranes between triblock copolymer-coated aqueous droplets in good solvents. Soft Matter 12, 5096–5109 (2016).

    CAS  PubMed  Article  Google Scholar 

  40. Bai, Y. et al. A double droplet trap system for studying mass transport across a droplet–droplet interface. Lab Chip 10, 1281–1285 (2010).

    CAS  PubMed  Article  Google Scholar 

  41. Taylor, G. J. et al. Capacitive detection of low-enthalpy, higher-order phase transitions in synthetic and natural composition lipid membranes. Langmuir 33, 10016–10026 (2017).

    CAS  PubMed  Article  Google Scholar 

  42. Taylor, G. J. & Sarles, S. A. Heating-enabled formation of droplet interface bilayers using Escherichia coli total lipid extract. Langmuir 31, 325–337 (2015).

    CAS  PubMed  Article  Google Scholar 

  43. Barlow, N. E. et al. Engineering plant membranes using droplet interface bilayers. Biomicrofluidics 11, 024107 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. Najem, J. S. et al. Memristive ion channel-doped biomembranes as synaptic mimics. ACS Nano 12, 4702–4711 (2018).

    CAS  PubMed  Article  Google Scholar 

  45. Michalak, Z., Muzzio, M., Milianta, P. J., Giacomini, R. & Lee, S. Effect of monoglyceride structure and cholesterol content on water permeability of the droplet bilayer. Langmuir 29, 15919–15925 (2013).

    CAS  PubMed  Article  Google Scholar 

  46. Lopez, M., Evangelista, S. E., Morales, M. & Lee, S. Enthalpic effects of chain length and unsaturation on water permeability across droplet bilayers of homologous monoglycerides. Langmuir 33, 900–912 (2017).

    CAS  PubMed  Article  Google Scholar 

  47. Lopez, M. et al. Effects of acyl chain unsaturation on activation energy of water permeability across droplet bilayers of homologous monoglycerides: role of cholesterol. Langmuir 34, 2147–2157 (2018).

    CAS  PubMed  Article  Google Scholar 

  48. Taylor, G. J., Venkatesan, G. A., Collier, C. P. & Sarles, S. A. Direct in situ measurement of specific capacitance, monolayer tension, and bilayer tension in a droplet interface bilayer. Soft Matter 11, 7592–7605 (2015).

    CAS  PubMed  Article  Google Scholar 

  49. de Wit, G., Danial, J. S. H., Kukura, P. & Wallace, M. I. Dynamic label-free imaging of lipid nanodomains. Proc. Natl Acad. Sci. USA 112, 12299–12303 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  50. Faugeras, V., Duclos, O., Bazile, D. & Thiam, A. R. Membrane determinants for the passive translocation of analytes through droplet interface bilayers. Soft Matter 16, 5970–5980 (2020).

    CAS  PubMed  Article  Google Scholar 

  51. Korner, J. L. & Elvira, K. S. The role of temperature in the formation of human–mimetic artificial cell membranes using droplet interface bilayers (DIBs). Soft Matter 17, 8891–8901 (2021).

    CAS  PubMed  Article  Google Scholar 

  52. van Meer, G., Voelker, D. R. & Feigenson, G. W. Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Biol. 9, 112–124 (2008).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  53. McMahon, H. T. & Boucrot, E. Membrane curvature at a glance. J. Cell Sci. 128, 1065–1070 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. Venkatesan, G. A. et al. Adsorption kinetics dictate monolayer self-assembly for both lipid-in and lipid-out approaches to droplet interface bilayer formation. Langmuir 31, 12883–12893 (2015).

    CAS  PubMed  Article  Google Scholar 

  55. Yanagisawa, M., Yoshida, T.-A., Furuta, M., Nakata, S. & Tokita, M. Adhesive force between paired microdroplets coated with lipid monolayers. Soft Matter 9, 5891–5897 (2013).

    CAS  Article  Google Scholar 

  56. Gross, L. C. M., Heron, A. J., Baca, S. C. & Wallace, M. I. Determining membrane capacitance by dynamic control of droplet interface bilayer area. Langmuir 27, 14335–14342 (2011).

    CAS  PubMed  Article  Google Scholar 

  57. Beltramo, P. J., Scheidegger, L. & Vermant, J. Toward realistic large-area cell membrane mimics: excluding oil, controlling composition, and including ion channels. Langmuir 34, 5880–5888 (2018).

    CAS  PubMed  Article  Google Scholar 

  58. Milianta, P. J., Muzzio, M., Denver, J., Cawley, G. & Lee, S. Water permeability across symmetric and asymmetric droplet interface bilayers: interaction of cholesterol sulfate with DPhPC. Langmuir 31, 12187–12196 (2015).

    CAS  PubMed  Article  Google Scholar 

  59. Braziel, S., Sullivan, K. & Lee, S. Quantitative Raman microspectroscopy for water permeability parameters at a droplet interface bilayer. Analyst 143, 747–755 (2018).

    CAS  PubMed  Article  Google Scholar 

  60. Valet, M., Pontani, L.-L., Voituriez, R., Wandersman, E. & Prevost, A. Diffusion through nanopores in connected lipid bilayer networks. Phys. Rev. Lett. 123, 088101 (2019).

    CAS  PubMed  Article  Google Scholar 

  61. Barlow, N. E. et al. Rheological droplet interface bilayers (rheo-DIBs): probing the unstirred water layer effect on membrane permeability via spinning disk induced shear stress. Sci. Rep. 7, 1–12 (2017).

    CAS  Article  Google Scholar 

  62. Funakoshi, K., Suzuki, H. & Takeuchi, S. Lipid bilayer formation by contacting monolayers in a microfluidic device for membrane protein analysis. Anal. Chem. 78, 8169–8174 (2006).

    CAS  PubMed  Article  Google Scholar 

  63. Booth, M. J., Cazimoglu, I. & Bayley, H. Controlled deprotection and release of a small molecule from a compartmented synthetic tissue module. Commun. Chem. 2, 1–8 (2019).

    Article  CAS  Google Scholar 

  64. Cazimoglu, I., Booth, M. J. & Bayley, H. A lipid-based droplet processor for parallel chemical signals. ACS Nano 15, 20214–20224 (2021).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. Li, X., Huang, J., Holden, M. A. & Chen, M. Peptide-mediated membrane transport of macromolecular cargo driven by membrane asymmetry. Anal. Chem. 89, 12369–12374 (2017).

    CAS  PubMed  Article  Google Scholar 

  66. Wood, M. et al. Ibuprofen and the phosphatidylcholine bilayer: membrane water permeability in the presence and absence of cholesterol. Langmuir 37, 4468–4480 (2021).

    CAS  PubMed  Article  Google Scholar 

  67. Allen-Benton, M., Findlay, H. E. & Booth, P. J. Probing membrane protein properties using droplet interface bilayers. Exp. Biol. Med. 244, 709–720 (2019).

    CAS  Article  Google Scholar 

  68. Leptihn, S., Thompson, J. R., Ellory, J. C., Tucker, S. J. & Wallace, M. I. In vitro reconstitution of eukaryotic ion channels using droplet interface bilayers. J. Am. Chem. Soc. 133, 9370–9375 (2011).

    CAS  PubMed  Article  Google Scholar 

  69. Smith, S. M. in Protein Chromatography: Methods and Protocols (eds Walls, D. & Loughran, S. T.) 485–496 (Humana, 2011).

  70. Najem, J. S. et al. Activation of bacterial channel MscL in mechanically stimulated droplet interface bilayers. Sci. Rep. 5, 13726 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  71. Strutt, R. et al. Activating mechanosensitive channels embedded in droplet interface bilayers using membrane asymmetry. Chem. Sci. 12, 2138–2145 (2021).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  72. Restrepo Schild, V. et al. Light-patterned current generation in a droplet bilayer array. Sci. Rep. 7, 46585 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  73. Alcinesio, A. et al. Controlled packing and single-droplet resolution of 3D-printed functional synthetic tissues. Nat. Commun. 11, 2105 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  74. Graham, A. D. et al. High-resolution patterned cellular constructs by droplet-based 3D printing. Sci. Rep. 7, 7004 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  75. Challita, E. J., Makhoul-Mansour, M. M. & Freeman, E. C. Reconfiguring droplet interface bilayer networks through sacrificial membranes. Biomicrofluidics 12, 034112 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  76. Villar, G., Heron, A. J. & Bayley, H. Formation of droplet networks that function in aqueous environments. Nat. Nanotechnol. 6, 803–808 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  77. Maglia, G. et al. Droplet networks with incorporated protein diodes show collective properties. Nat. Nanotechnol. 4, 437–440 (2009).

    CAS  PubMed  Article  Google Scholar 

  78. Bayoumi, M., Bayley, H., Maglia, G. & Sapra, K. T. Multi-compartment encapsulation of communicating droplets and droplet networks in hydrogel as a model for artificial cells. Sci. Rep. 7, 45167 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  79. Challita, E. J., Najem, J. S., Monroe, R., Leo, D. J. & Freeman, E. C. Encapsulating networks of droplet interface bilayers in a thermoreversible organogel. Sci. Rep. 8, 1–11 (2018).

    CAS  Article  Google Scholar 

  80. Shen, H.-H., Lithgow, T. & Martin, L. L. Reconstitution of membrane proteins into model membranes: seeking better ways to retain protein activities. Int. J. Mol. Sci. 14, 1589–1607 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  81. Giacomini, K. M. et al. Membrane transporters in drug development. Nat. Rev. Drug Discov. 9, 215–236 (2010).

    CAS  PubMed  Article  Google Scholar 

  82. Rofeh, J. & Theogarajan, L. Instantaneous tension measurements in droplet interface bilayers using an inexpensive, integrated pendant drop camera. Soft Matter 16, 4484–4493 (2020).

    CAS  PubMed  Article  Google Scholar 

  83. Liu, P., Zabala-Ferrera, O. & Beltramo, P. J. Fabrication and electromechanical characterization of freestanding asymmetric membranes. Biophys. J. 120, 1755–1764 (2021).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  84. Okuno, D. et al. A simple method for ion channel recordings using fine gold electrode. Anal. Sci. 32, 1353–1357 (2016).

    CAS  PubMed  Article  Google Scholar 

  85. Shoji, K., Kawano, R. & White, R. J. Recessed Ag/AgCl microelectrode-supported lipid bilayer for nanopore sensing. Anal. Chem. 92, 10856–10862 (2020).

    CAS  PubMed  Article  Google Scholar 

  86. Challita, E. J. & Freeman, E. C. Hydrogel microelectrodes for the rapid, reliable, and repeatable characterization of lipid membranes. Langmuir 34, 15166–15173 (2018).

    CAS  PubMed  Article  Google Scholar 

  87. Makhoul-Mansour, M. M. & Freeman, E. C. Droplet-based membranous soft materials. Langmuir 37, 3231–3247 (2021).

    CAS  PubMed  Article  Google Scholar 

  88. Sarles, S. A., Madden, J. D. W. & Leo, D. J. Hair cell inspired mechanotransduction with a gel-supported, artificial lipid membrane. Soft Matter 7, 4644 (2011).

    CAS  Article  Google Scholar 

  89. Tamaddoni, N., Freeman, E. C. & Sarles, S. A. Sensitivity and directionality of lipid bilayer mechanotransduction studied using a revised, highly durable membrane-based hair cell sensor. Smart Mater. Struct. 24, 065014 (2015).

    Article  CAS  Google Scholar 

  90. Venkatesan, G. A. et al. Evaporation-induced monolayer compression improves droplet interface bilayer formation using unsaturated lipids. Biomicrofluidics 12, 024101 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  91. Dupin, A. & Simmel, F. C. Signalling and differentiation in emulsion-based multi-compartmentalized in vitro gene circuits. Nat. Chem. 11, 32–39 (2019).

    CAS  PubMed  Article  Google Scholar 

  92. Farley, S., Ramsay, K. & Elvira, K. S. A plug-and-play modular microcapillary platform for the generation of multicompartmental double emulsions using glass or fluorocarbon capillaries. Lab Chip 21, 2781–2790 (2021).

    CAS  PubMed  Article  Google Scholar 

  93. Bachler, S., Ort, M., Krämer, S. D. & Dittrich, P. S. Permeation studies across symmetric and asymmetric membranes in microdroplet arrays. Anal. Chem. 93, 5137–5144 (2021).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  94. Czekalska, M. A., Kaminski, T. S., Horka, M., Jakiela, S. & Garstecki, P. An automated microfluidic system for the generation of droplet interface bilayer networks. Micromachines 8, 93 (2017).

    PubMed Central  Article  Google Scholar 

  95. Barlow, N. E. et al. Multiplexed droplet interface bilayer formation. Lab Chip 16, 4653–4657 (2016).

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

K.S.E. is a Canada Research Chair and a Michael Smith Foundation for Health Research Scholar in partnership with the Pacific Alzheimer Research Foundation and receives funding from both. E.B.S. and J.L.K. are funded through K.S.E.’s Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery grant.

Author information

Authors and Affiliations

Authors

Contributions

E.B.S. and J.L.K. conducted the literature review and contributed to the writing. K.S.E. conceptualized and supervised the project, and wrote, reviewed and edited the manuscript.

Corresponding author

Correspondence to Katherine S. Elvira.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Stephen Sarles and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Stephenson, E.B., Korner, J.L. & Elvira, K.S. Challenges and opportunities in achieving the full potential of droplet interface bilayers. Nat. Chem. 14, 862–870 (2022). https://doi.org/10.1038/s41557-022-00989-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-022-00989-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing