Abstract
Chemical reaction networks that transform out-of-equilibrium ‘fuel’ to ‘waste’ are the engines that power the biomolecular machinery of the cell. Inspired by such systems, autonomous artificial molecular machinery is being developed that functions by catalysing the decomposition of chemical fuels, exploiting kinetic asymmetry to harness energy released from the fuel-to-waste reaction to drive non-equilibrium structures and dynamics. Different aspects of chemical fuels profoundly influence their ability to power molecular machines. Here we consider the structure and properties of the fuels that biology has evolved and compare their features with those of the rudimentary synthetic chemical fuels that have so far been used to drive autonomous non-equilibrium molecular-level dynamics. We identify desirable, but context-specific, traits for chemical fuels together with challenges and opportunities for the design and invention of new chemical fuels to power synthetic molecular machinery and other dissipative nanoscale processes.

This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout






References
Ragazzon, G. & Prins, L. J. Energy consumption in chemical fuel-driven self-assembly. Nat. Nanotechnol. 13, 882–889 (2018).
Das, K., Gabrielli, L. & Prins, L. J. Chemically fueled self‐assembly in biology and chemistry. Angew. Chem. Int. Ed. 60, 20120–20143 (2021).
Biagini, C. & Di Stefano, S. Abiotic chemical fuels for the operation of molecular machines. Angew. Chem. Int. Ed. 59, 8344–8354 (2020).
Astumian, R. D., Mukherjee, S. & Warshel, A. The physics and physical chemistry of molecular machines. ChemPhysChem 17, 1719–1741 (2016).
Brown, A. I. & Sivak, D. A. Theory of nonequilibrium free energy transduction by molecular machines. Chem. Rev. 120, 434–459 (2020).
Amano, S., Borsley, S., Leigh, D. A. & Sun, Z. Chemical engines: driving systems away from equilibrium through catalyst reaction cycles. Nat. Nanotechnol. 16, 1057–1067 (2021).
Kay, E. R., Leigh, D. A. & Zerbetto, F. Synthetic molecular motors and mechanical machines. Angew. Chem. Int. Ed. 46, 72–191 (2007).
Aprahamian, I. The future of molecular machines. ACS Cent. Sci. 6, 347–358 (2020).
Erbas-Cakmak, S., Leigh, D. A., McTernan, C. T. & Nussbaumer, A. L. Artificial molecular machines. Chem. Rev. 115, 10081–10206 (2015).
Wilson, M. R. et al. An autonomous chemically fuelled small-molecule motor. Nature 534, 235–240 (2016).
Amano, S., Fielden, S. D. P. & Leigh, D. A. A catalysis-driven artificial molecular pump. Nature 594, 529–534 (2021).
Borsley, S., Leigh, D. A. & Roberts, B. M. W. A doubly kinetically-gated information ratchet autonomously driven by carbodiimide hydration. J. Am. Chem. Soc. 143, 4414–4420 (2021).
Borsley, S., Kreidt, E., Leigh, D. A. & Roberts, B. M. W. Autonomous fuelled directional rotation about a covalent single bond. Nature 604, 80–85 (2022).
van Esch, J. H., Klajn, R. & Otto, S. Chemical systems out of equilibrium. Chem. Soc. Rev. 46, 5474–5475 (2017).
Baroncini, M., Silvi, S. & Credi, A. Photo- and redox-driven artificial molecular motors. Chem. Rev. 120, 200–268 (2020).
Roke, D., Wezenberg, S. J. & Feringa, B. L. Molecular rotary motors: unidirectional motion around double bonds. Proc. Natl Acad. Sci. USA 115, 9423–9431 (2018).
Pezzato, C. et al. Controlling dual molecular pumps electrochemically. Angew. Chem. Int. Ed. 57, 9325–9329 (2018).
Howe, E. N. W. & Gale, P. A. Fatty acid fueled transmembrane chloride transport. J. Am. Chem. Soc. 141, 10654–10660 (2019).
Weißenfels, M., Gemen, J. & Klajn, R. Dissipative self-assembly: fueling with chemicals versus light. Chem 7, 23–37 (2021).
Walsh, C. T., Tu, B. P. & Tang, Y. Eight kinetically stable but thermodynamically activated molecules that power cell metabolism. Chem. Rev. 118, 1460–1494 (2018).
Toropova, K. et al. Structure of the dynein-2 complex and its assembly with intraflagellar transport trains. Nat. Struct. Mol. Biol. 26, 823–829 (2019).
Astumian, R. D. Kinetic asymmetry allows macromolecular catalysts to drive an information ratchet. Nat. Commun. 10, 3837 (2019).
Amano, S. et al. Insights from an information thermodynamics analysis of a synthetic molecular motor. Nat. Chem. 14, 530–537 (2022).
Boekhoven, J., Hendriksen, W. E., Koper, G. J. M., Eelkema, R. & van Esch, J. H. Transient assembly of active materials fueled by a chemical reaction. Science 349, 1075–1079 (2015).
Tena-Solsona, M. et al. Non-equilibrium dissipative supramolecular materials with a tunable lifetime. Nat. Commun. 8, 15895 (2017).
Kariyawasam, L. S. & Hartley, C. S. Dissipative assembly of aqueous carboxylic acid anhydrides fueled by carbodiimides. J. Am. Chem. Soc. 139, 11949–11955 (2017).
Kariyawasam, L. S., Hossain, M. M. & Hartley, C. S. The transient covalent bond in abiotic nonequilibrium systems. Angew. Chem. Int. Ed. 60, 12648–12658 (2021).
Rieß, B., Grötsch, R. K. & Boekhoven, J. The design of dissipative molecular assemblies driven by chemical reaction cycles. Chem 6, 552–578 (2020).
Wilson, D. A., Nolte, R. J. M. & van Hest, J. C. M. Autonomous movement of platinum-loaded stomatocytes. Nat. Chem. 4, 268–274 (2012).
Sorrenti, A., Leira-Iglesias, J., Markvoort, A. J., de Greef, T. F. A. & Hermans, T. M. Non-equilibrium supramolecular polymerization. Chem. Soc. Rev. 46, 5476–5490 (2017).
Leng, Z., Peng, F. & Hao, X. Chemical-fuel-driven assembly in macromolecular science: recent advances and challenges. ChemPlusChem 85, 1190–1199 (2020).
Merindola, R. & Walther, A. Materials learning from life: concepts for active, adaptive and autonomous molecular systems. Chem. Soc. Rev. 46, 5588–5619 (2017).
Penocchio, E., Rao, R. & Esposito, M. Thermodynamic efficiency in dissipative chemistry. Nat. Commun. 10, 3865 (2019).
Biagini, C. et al. Dissipative catalysis with a molecular machine. Angew. Chem. Int. Ed. 58, 9876–9880 (2019).
Berrocal, J. A., Biagini, C., Mandolini, L. & Di Stefano, S. Coupling of the decarboxylation of 2-cyano-2-phenylpropanoic acid to large-amplitude motions: a convenient fuel for an acid–base-operated molecular switch. Angew. Chem. Int. Ed. 55, 6997–7001 (2016).
Erbas-Cakmak, S. et al. Rotary and linear molecular motors driven by pulses of a chemical fuel. Science 358, 340–343 (2017).
Shi, Q. & Chen, C.-F. Step-by-step reaction-powered mechanical motion triggered by a chemical fuel pulse. Chem. Sci. 10, 2529–2533 (2019).
Kelly, T. R., Tellitu, I. & Sestelo, J. P. In search of molecular ratchets. Angew. Chem. Int. Ed. Engl. 36, 1866–1868 (1997).
Kelly, T. R. Progress toward a rationally designed molecular motor. Acc. Chem. Res. 34, 514–522 (2001).
Davis, A. P. Tilting at windmills? The Second Law survives. Angew. Chem. Int. Ed. Engl. 37, 909–910 (1998).
Feynman, R. P., Leighton, R. B. & Sands, M. The Feynman Lectures on Physics, Vol. 1 (Addison-Wesley, 1963).
Kelly, T. R., De Silva, H. & Silva, R. A. Unidirectional rotary motion in a molecular system. Nature 401, 150–152 (1999).
Alvarez-Pérez, M., Goldup, S. M., Leigh, D. A. & Slawin, A. M. Z. A chemically-driven molecular information ratchet. J. Am. Chem. Soc. 130, 1836–1838 (2008).
Carlone, A., Goldup, S. M., Lebrasseur, N., Leigh, D. A. & Wilson, A. A three-compartment chemically-driven molecular information ratchet. J. Am. Chem. Soc. 134, 8321–8323 (2012).
Fletcher, S. P., Dumur, F., Pollard, M. M. & Feringa, B. L. A reversible, unidirectional molecular rotary motor driven by chemical energy. Science 310, 80–82 (2005).
Pan, J., Li, F., Cha, T.-G., Chen, H. & Choi, J. H. Recent progress on DNA based walkers. Curr. Opin. Biotechnol. 34, 56–64 (2015).
Valero, J. & Škugor, M. Mechanisms, methods of tracking and applications of DNA walkers: a review. Chemphyschem. 21, 1971–1988 (2020).
Bath, J., Green, S. J., Allen, K. E. & Turberfield, A. J. Mechanism for a directional, processive, and reversible DNA motor. Small 5, 1513–1516 (2009).
Mock, W. L. & Ochwat, K. J. Theory and example of a small-molecule motor. J. Phys. Org. Chem. 16, 175–182 (2003).
Berná, J., Alajarín, M. & Orenes, R.-A. Azodicarboxamides as template binding motifs for the building of hydrogen-bonded molecular shuttles. J. Am. Chem. Soc. 132, 10741–10747 (2010).
Li, C.-B. & Toyabe, S. Efficiencies of molecular motors: a comprehensible overview. Biophys. Rev. 12, 419–423 (2020).
Rosing, J. & Slater, E. C. The value of ΔG° for the hydrolysis of ATP. Biochim. Biophys. Acta Bioenerg. 267, 275–290 (1972).
Westheimer, F. H. Why nature chose phosphates. Science 235, 1173–1178 (1987).
Mitchison, T. & Kirschner, M. Dynamic instability of microtubule growth. Nature 312, 237–242 (1984).
Dhiman, S., Jain, A. & George, S. J. Transient helicity: fuel‐driven temporal control over conformational switching in a supramolecular polymer. Angew. Chem. Int. Ed. 56, 1329–1333 (2017).
Watson, M. A. & Cockroft, S. L. An autonomously reciprocating transmembrane nanoactuator. Angew. Chem. Int. Ed. 55, 1345–1349 (2016).
Wolfenden, R. & Snider, M. J. The depth of chemical time and the power of enzymes as catalysts. Acc. Chem. Res. 34, 938–945 (2001).
Kiani, F. A. & Fischer, S. Stabilization of the ADP/metaphosphate intermediate during ATP hydrolysis in pre-power stroke myosin. J. Biol. Chem. 288, 35569–35580 (2013).
Beis, I. & Newsholme, E. A. The contents of adenine nucleotides, phosphagens and some glycolytic intermediates in resting muscles from vertebrates and invertebrates. Biochem. J. 152, 23–32 (1975).
Kornberg, A. For the Love of Enzymes: Odyssey of a Biochemist (Harvard Univ. Press, 1989).
Agapakis, C. M., Boyle, P. M. & Silver, P. A. Natural strategies for the spatial optimization of metabolism in synthetic biology. Nat. Chem. Biol. 8, 527–535 (2012).
Zecchin, A., Stapor, P. C., Goveia, J. & Carmeliet, P. Metabolic pathway compartmentalization: an underappreciated opportunity? Curr. Opin. Biotechnol. 34, 73–81 (2015).
Bader, A. & Cockroft, S. L. Conformational enhancement of fidelity in toehold-sequestered DNA nanodevices. Chem. Commun. 56, 5135–5138 (2020).
Boissan, M. et al. Nucleoside diphosphate kinases fuel dynamin superfamily proteins with GTP for membrane remodeling. Science 344, 1510–1515 (2014).
Ma, B. & Nussinov, R. Enzyme dynamics point to stepwise conformational selection in catalysis. Curr. Opin. Chem. Biol. 14, 652–659 (2010).
Kamerlin, S. C. & Warshel, A. At the dawn of the 21st century: is dynamics the missing link for understanding enzyme catalysis? Proteins 78, 1339–1375 (2009).
Blanco, V., Leigh, D. A. & Marcos, V. Artificial switchable catalysts. Chem. Soc. Rev. 44, 5341–5370 (2015).
Herges, R. Molecular assemblers: molecular machines performing chemical synthesis. Chem. Sci. 11, 9048–9055 (2020).
Abrahams, J. P., Leslie, A. G. W., Lutter, R. & Walker, J. E. Structure at 2.8 Å resolution of F1-ATPase from bovine heart mitochondria. Nature 370, 621–628 (1994).
Hosseini, M. W. et al. Supramolecular catalysis: polyammonium macrocycles as enzyme mimics for phosphoryl transfer in ATP hydrolysis. J. Am. Chem. Soc. 111, 6330–6335 (1989).
Efremov, A. & Wang, Z. Universal optimal working cycles of molecular motors. Phys. Chem. Chem. Phys. 13, 6223–6233 (2011).
Albaugh, A. & Gingrich, T. R. Simulating a chemically-fueled molecular motor with nonequilibrium molecular dynamics. Nat. Commun. 13, 2204 (2021).
SantaLucia, J. Jr. & Hicks, D. The thermodynamics of DNA structural motifs. Annu. Rev. Biophys. Biomol. Struct. 33, 415–440 (2004).
Clancy, B. E., Behnke-Parks, W. M., Andreasson, J. O. L., Rosenfeld, S. S. & Block, S. M. A universal pathway for kinesin stepping. Nat. Struct. Mol. Biol. 18, 1020–1027 (2011).
Nishiyama, M., Higuchi, H. & Yanagida, T. Chemomechanical coupling of the forward and backward steps of single kinesin molecules. Nat. Cell Biol. 4, 790–797 (2002).
Tordini, F. et al. Theoretical study of hydration of cyanamide and carbodiimide. J. Phys. Chem. A 107, 1188–1196 (2003).
Singh, N., Formon, G. J. M., De Piccoli, S. & Hermans, T. M. Devising synthetic reaction cycles for dissipative nonequilibrium self-assembly. Adv. Mater. 32, 1906834 (2020).
Bazhin, N. The essence of ATP coupling. ISRN Biochem. 2012, 827604 (2012).
Bonora, M. et al. ATP synthesis and storage. Purinergic Signal. 8, 343–357 (2012).
Sorrenti, A., Leira-Iglesias, J., Sato, A. & Hermans, T. M. Non-equilibrium steady states in supramolecular polymerization. Nat. Commun. 8, 15899 (2017).
Popson, M. S., Dimri, M. & Borger, J. Biochemistry, Heat and Calories (StatPearls, 2021).
Ugajin, A. et al. Detection of neural activity in the brains of Japanese honeybee workers during the formation of a ‘hot defensive bee ball’. PLoS One 7, e32902 (2012).
Zhang, L., Marcos, V. & Leigh, D. A. Molecular machines with bio-inspired mechanisms. Proc. Natl Acad. Sci. USA 115, 9397–9404 (2018).
De, S. & Klajn, R. Dissipative self-assembly driven by the consumption of chemical fuels. Adv. Mater. 30, 1706750 (2018).
Watson, M. A. & Cockroft, S. L. Man-made molecular machines: membrane bound. Chem. Soc. Rev. 45, 6118–6129 (2016).
Langton, M. J. Engineering of stimuli responsive lipid-bilayer membranes using supramolecular systems. Nat. Rev. Chem. 5, 46–61 (2021).
Xu, X. et al. Boric acid‐fueled ATP synthesis by F0F1 ATP synthase reconstituted in a supramolecular architecture. Angew. Chem. Int. Ed. 60, 7617–7620 (2021).
Dhiman, S., Jain, A., Kumar, M. & George, S. J. Adenosine-phosphate-fueled, temporally programmed supramolecular polymers with multiple transient states. J. Am. Chem. Soc. 139, 16568–16575 (2017).
Faulkner, A., van Leeuwen, T., Feringa, B. L. & Wezenberg, S. J. Allosteric regulation of the rotational speed in a light-driven molecular motor. J. Am. Chem. Soc. 138, 13597–13603 (2016).
Guo, H., Suzuki, T. & Rubinstein, J. L. Structure of a bacterial ATP synthase. eLife 8, e43128 (2019).
Schmidt, H., Zalyte, R., Urnavicius, L. & Carter, A. P. Structure of human cytoplasmic dynein-2 primed for its power stroke. Nature 518, 435–438 (2015).
Acknowledgements
We thank the Engineering and Physical Sciences Research Council (EPSRC; grant number EP/P027067/1) and the European Research Council (ERC; Advanced Grant number 786630) for funding, and S. Amano and E. Kreidt for useful discussions. D.A.L. is a Royal Society Research Professor.
Author information
Authors and Affiliations
Contributions
All authors contributed to the writing of the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Chemistry thanks Scott Hartley, Xiang Hao and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Borsley, S., Leigh, D.A. & Roberts, B.M.W. Chemical fuels for molecular machinery. Nat. Chem. 14, 728–738 (2022). https://doi.org/10.1038/s41557-022-00970-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41557-022-00970-9
This article is cited by
-
A tape-reading molecular ratchet
Nature (2022)