Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tunable and recyclable polyesters from CO2 and butadiene

Abstract

Carbon dioxide is inexpensive and abundant, and its prevalence as waste makes it attractive as a sustainable chemical feedstock. Although there are examples of copolymerizations of CO2 with high-energy monomers, the direct copolymerization of CO2 with olefins has not been reported. Here an alternative route to functionalizable, recyclable polyesters derived from CO2, butadiene and hydrogen via an intermediary lactone, 3-ethyl-6-vinyltetrahydro-2H-pyran-2-one, is described. Catalytic ring-opening polymerization of the lactone by 1,5,7-triazabicyclo[4.4.0]dec-5-ene yields polyesters with molar masses up to 13.6 kg mol−1 and pendent vinyl side chains that can undergo post-polymerization functionalization. The polymer has a low ceiling temperature of 138 °C, allowing for facile chemical recycling, and is inherently biodegradable under aerobic aqueous conditions (OECD-301B protocol). These results show that a well-defined polyester can be derived from CO2, olefins and hydrogen, expanding access to new polymer feedstocks that were once considered unfeasible.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: EVP is a promising platform chemical derived from the telomerization of CO2 and butadiene that is underutilized in polymer synthesis.
Fig. 2: Synthesis and thermodynamic comparisons.
Fig. 3: Molecular weight studies of EtVP polymerization.
Fig. 4: The cistrans interconversion of EtVP via α-epimerization.
Fig. 5: Recycling and degradation of poly(EtVP).
Fig. 6: Post-polymerization modification of poly(EtVP).

Similar content being viewed by others

Data availability

All primary data files63 are available free of charge from the Data Repository for the University of Minnesota at https://doi.org/10.13020/sy3d-cf59.

References

  1. Omae, I. Recent developments in carbon dioxide utilization for the production of organic chemicals. Coord. Chem. Rev. 256, 1384–1405 (2012).

    Article  CAS  Google Scholar 

  2. Sakakura, T., Choi, J. C. & Yasuda, H. Transformation of carbon dioxide. Chem. Rev. 107, 2365–2387 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Grignard, B., Gennen, S., Jérôme, C., Kleij, A. W. & Detrembleur, C. Advances in the use of CO2 as a renewable feedstock for the synthesis of polymers. Chem. Soc. Rev. 48, 4466–4514 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Artz, J. et al. Sustainable conversion of carbon dioxide: an integrated review of catalysis and life cycle assessment. Chem. Rev. 118, 434–504 (2018).

    Article  CAS  PubMed  Google Scholar 

  5. Dabral, S. & Schaub, T. The use of carbon dioxide (CO2) as a building block in organic synthesis from an industrial perspective. Adv. Synth. Catal. 361, 223–246 (2019).

    Article  CAS  Google Scholar 

  6. Khoo, R. S. H., Luo, H.-K., Braunstein, P. & Hor, T. S. A. Transformation of CO2 to value-added materials. J. Mol. Eng. Mater. 3, 1540007 (2015).

    Article  CAS  Google Scholar 

  7. Zhu, Y., Romain, C. & Williams, C. K. Sustainable polymers from renewable resources. Nature 540, 354–362 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Price, C. J., Jesse, B., Reich, E. & Miller, S. A. Thermodynamic and kinetic considerations in the copolymerization of ethylene and carbon dioxide. Macromolecules 39, 2751–2756 (2006).

    Article  CAS  Google Scholar 

  9. Musco, A., Perego, C. & Tartiari, V. Telomerization reactions of butadiene and CO2 catalyzed by phosphine Pd(0) complexes: (E)−2-ethylideneheptden-5-olide and octadienyl esters of 2-ethylidenehepta-4,6-dienoic acid. Inorg. Chim. Acta 28, L147–L148 (1978).

    Article  CAS  Google Scholar 

  10. Inoue, Y., Sasaki, Y. & Hashimoto, H. Incorporation of CO2 in butadiene dimerization catalyzed by palladium complexes. Formation of 2-ethylidene-5-hepten-4-olide. Bull. Chem. Soc. Jpn 51, 2375–2378 (1978).

    Article  CAS  Google Scholar 

  11. Braunstein, P., Matt, D. & Nobel, D. Carbon dioxide activation and catalytic lactone synthesis by telomerization of butadiene and CO2. J. Am. Chem. Soc. 110, 3207–3212 (1988).

    Article  CAS  Google Scholar 

  12. Behr, A. & Juszak, K. D. Palladium-catalyzed reaction of butadiene and carbon dioxide. J. Organomet. Chem. 255, 263–268 (1983).

    Article  CAS  Google Scholar 

  13. Sharif, M., Jackstell, R., Dastgir, S., Al-Shihi, B. & Beller, M. Efficient and selective palladium-catalyzed telomerization of 1,3-butadiene with carbon dioxide. ChemCatChem 9, 542–546 (2017).

    Article  CAS  Google Scholar 

  14. Balbino, J. M., Dupont, J. & Bayón, J. C. Telomerization of 1,3-butadiene with carbon dioxide: a highly efficient process for δ-lactone generation. ChemCatChem 10, 206–210 (2018).

    Article  CAS  Google Scholar 

  15. Song, J. et al. Selective synthesis of δ-lactone via palladium nanoparticles-catalyzed telomerization of CO2 with 1,3-butadiene. Tetrahedron Lett. 57, 3163–3166 (2016).

    Article  CAS  Google Scholar 

  16. Behr, A. & Henze, G. Use of carbon dioxide in chemical syntheses via a lactone intermediate. Green Chem. 13, 25–39 (2011).

    Article  CAS  Google Scholar 

  17. Haack, V., Dinjus, E. & Pitter, S. Synthesis of polymers with an intact lactone ring structure in the main chain. Angew. Makromol. Chem. 257, 19–22 (1998).

    Article  CAS  Google Scholar 

  18. Hardouin Duparc, V., Shakaroun, R. M., Slawinski, M., Carpentier, J. F. & Guillaume, S. M. Ring-opening (co)polymerization of six-membered substituted ë-valerolactones with alkali metal alkoxides. Eur. Polym. J. 134, 109858 (2020).

    Article  CAS  Google Scholar 

  19. Sajjad, H., Prebihalo, E. A., Tolman, W. B. & Reineke, T. M. Ring opening polymerization of β-acetoxy-δ-methylvalerolactone, a triacetic acid lactone derivative. Polym. Chem. 12, 6724–6730 (2021).

    Article  CAS  Google Scholar 

  20. Schneiderman, D. K. & Hillmyer, M. A. Aliphatic polyester block polymer design. Macromolecules 49, 2419–2428 (2016).

    Article  CAS  Google Scholar 

  21. Olsén, P., Odelius, K. & Albertsson, A. C. Thermodynamic presynthetic considerations for ring-opening polymerization. Biomacromolecules 17, 699–709 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Wheeler, O. H. & Granell, E. E. Solvolysis of substituted γ-butrolactones and δ-valerolactones. J. Org. Chem. 701, 1959–1961 (1964).

    Google Scholar 

  23. Nakano, R., Ito, S. & Nozaki, K. Copolymerization of carbon dioxide and butadiene via a lactone intermediate. Nat. Chem. 6, 325–331 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Tang, S., Zhao, Y. & Nozaki, K. Accessing divergent main-chain-functionalized polyethylenes via copolymerization of ethylene with a CO2/butadiene-derived lactone. J. Am. Chem. Soc. 143, 17953–17957 (2021).

    Article  CAS  PubMed  Google Scholar 

  25. Liu, M., Sun, Y., Liang, Y. & Lin, B. L. Highly efficient synthesis of functionalizable polymers from a CO2/1,3-butadiene-derived lactone. ACS Macro Lett. 6, 1373–1378 (2017).

    Article  CAS  PubMed  Google Scholar 

  26. Yue, S. et al. Ring-opening polymerization of CO2-based disubstituted δ-valerolactone toward sustainable functional polyesters. ACS Macro Lett. 10, 1055–1060 (2021).

    Article  CAS  PubMed  Google Scholar 

  27. Espinosa, L. D. G., Williams-Pavlantos, K., Turney, K. M., Wesdemiotis, C. & Eagan, J. M. Degradable polymer structures from carbon dioxide and butadiene. ACS Macro Lett. 10, 1254–1259 (2021).

    Article  CAS  Google Scholar 

  28. Sugiura, M., Sato, N., Kotani, S. & Nakajima, M. Lewis base-catalyzed conjugate reduction and reductive aldol reaction of α,β-unsaturated ketones using trichlorosilane. Chem. Commun. 2, 4309–4311 (2008).

    Article  CAS  Google Scholar 

  29. Behr, A. & Brehme, V. A. Bimetallic-catalyzed reduction of carboxylic acids and lactones to alcohols and diols. Adv. Synth. Catal. 344, 525–532 (2002).

    Article  CAS  Google Scholar 

  30. Hudlicky, T., Sinai-Zingde, G. & Natchus, M. G. Selective reduction of α,β-unsaturated esters in the presence of olefins. Tetrahedron Lett. 28, 5287–5290 (1987).

    Article  CAS  Google Scholar 

  31. Makiguchi, K., Satoh, T. & Kakuchi, T. Diphenyl phosphate as an efficient cationic organocatalyst for controlled/living ring-opening polymerization of δ-valerolactone and ε-caprolactone. Macromolecules 44, 1999–2005 (2011).

    Article  CAS  Google Scholar 

  32. Delcroix, D. et al. Phosphoric and phosphoramidic acids as bifunctional catalysts for the ring-opening polymerization of ε-caprolactone: a combined experimental and theoretical study. Polym. Chem. 2, 2249–2256 (2011).

    Article  CAS  Google Scholar 

  33. Dove, A. P. Organic catalysis for ring-opening polymerization. ACS Macro Lett. 1, 1409–1412 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Thomas, C. & Bibal, B. Hydrogen-bonding organocatalysts for ring-opening polymerization. Green Chem. 16, 1687–1699 (2014).

    Article  CAS  Google Scholar 

  35. Chuma, A. et al. The reaction mechanism for the organocatalytic ring-opening polymerization of l-lactide using a guanidine-based catalyst: hydrogen-bonded or covalently bound? J. Am. Chem. Soc. 130, 6749–6754 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Pratt, R. C., Lohmeijer, B. G. G., Long, D. A., Waymouth, R. M. & Hedrick, J. L. Triazabicyclodecene: a simple bifunctional organocatalyst for acyl transfer and ring-opening polymerization of cyclic esters. J. Am. Chem. Soc. 128, 4556–4557 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Simón, L. & Goodman, J. M. The mechanism of TBD-catalyzed ring-opening polymerization of cyclic esters. J. Org. Chem. 72, 9656–9662 (2007).

    Article  PubMed  CAS  Google Scholar 

  38. Whelan, D. in Brydson’s Plastic Materials 8th edn (ed. Gilbert, M.) Ch. 24 (Butterworth-Heinemann, 2017).

  39. Wanamaker, C. L., O’Leary, L. E., Lynd, N. A., Hillmyer, M. A. & Tolman, W. B. Renewable-resource thermoplastic elastomers based on polylactide and polymenthide. Biomacromolecules 8, 3634–3640 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Lin, B. & Waymouth, R. M. Urea anions: simple, fast and selective catalysts for ring-opening polymerizations. J. Am. Chem. Soc. 139, 1645–1652 (2017).

    Article  CAS  PubMed  Google Scholar 

  41. Anslyn, E. V. & Dougherty, D. A. in Modern Physical Organic Chemistry Ch. 2 (University Science Books, 2006).

  42. Hong, M. & Chen, E. Y. X. Future directions for sustainable polymers. Trends Chem. 1, 148–151 (2019).

    Article  CAS  Google Scholar 

  43. Tang, X. & Chen, E. Y. X. Toward infinitely recyclable plastics derived from renewable cyclic esters. Chem 5, 284–312 (2019).

    Article  CAS  Google Scholar 

  44. Fagnani, D. E. et al. 100th anniversary of macromolecular science viewpoint: redefining sustainable polymers. ACS Macro Lett. 10, 41–53 (2021).

    Article  CAS  PubMed  Google Scholar 

  45. Darensbourg, D. J., Wei, S.-H., Yeung, A. D. & Chadwick Ellis, W. An efficient method of depolymerization of poly(cyclopentene carbonate) to its comonomers: cyclopentene oxide and carbon dioxide. Macromolecules 46, 5850–5855 (2013).

    Article  CAS  Google Scholar 

  46. Zhu, J. B., Watson, E. M., Tang, J. & Chen, E. Y. X. A synthetic polymer system with repeatable chemical recyclability. Science 360, 398–403 (2018).

    Article  CAS  PubMed  Google Scholar 

  47. Abel, B. A., Snyder, R. L. & Coates, G. W. Chemically recyclable thermoplastics from reversible-deactivation polymerization of cyclic acetals. Science 789, 783–789 (2021).

    Article  CAS  Google Scholar 

  48. OECD. Test No. 301: Ready Biodegradability, OECD Guidelines for the Testing of Chemicals Section 3 (OECD, 1992).

  49. Ditzler, R. A. J. & Zhukhovitskiy, A. V. Sigmatropic rearrangements of polymer backbones: vinyl polymers from polyesters in one step. J. Am. Chem. Soc. 143, 20326–20331 (2021).

    Article  CAS  PubMed  Google Scholar 

  50. Rieger, J. et al. Versatile functionalization and grafting of poly(ε-caprolactone) by Michael-type addition. Chem. Commun. 2005, 274–276 (2005).

    Article  Google Scholar 

  51. Tang, X. et al. The quest for converting biorenewable bifunctional α-methylene-γ-butyrolactone into degradable and recyclable polyester: controlling vinyl-addition/ring-opening/cross-linking pathways. J. Am. Chem. Soc. 138, 14326–14337 (2016).

    Article  CAS  PubMed  Google Scholar 

  52. Campos, L. M. et al. Development of thermal and photochemical strategies for thiol-ene click polymer functionalization. Macromolecules 41, 7063–7070 (2008).

    Article  CAS  Google Scholar 

  53. Hauenstein, O., Agarwal, S. & Greiner, A. Bio-based polycarbonate as synthetic toolbox. Nat. Commun. 7, 11862 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chanda, S. & Ramakrishnan, S. Poly(alkylene itaconate)s – an interesting class of polyesters with periodically located exo-chain double bonds susceptible to Michael addition. Polym. Chem. 6, 2108–2114 (2015).

    Article  CAS  Google Scholar 

  55. Ohsawa, S., Morino, K., Sudo, A. & Endo, T. Synthesis of a reactive polyester bearing α,β-unsaturated ketone groups by anionic alternating copolymerization of epoxide and bicyclic bis(γ-butyrolactone) bearing isopropenyl group. Macromolecules 44, 1814–1820 (2011).

    Article  CAS  Google Scholar 

  56. Huang, K. S. et al. Recent advances in antimicrobial polymers: a mini-review. Int. J. Mol. Sci. 17, 1578–1592 (2016).

    Article  PubMed Central  CAS  Google Scholar 

  57. Șucu, T. & Shaver, M. P. Inherently degradable cross-linked polyesters and polycarbonates: resins to be cheerful. Polym. Chem. 11, 6397–6421 (2020).

    Article  Google Scholar 

  58. Brutman, J. P., De Hoe, G. X., Schneiderman, D. K., Le, T. N. & Hillmyer, M. A. Renewable, degradable and chemically recyclable cross-linked elastomers. Ind. Eng. Chem. Res. 55, 11097–11106 (2016).

    Article  CAS  Google Scholar 

  59. Robert, T. & Friebel, S. Itaconic acid—a versatile building block for renewable polyesters with enhanced functionality. Green Chem. 18, 2922–2934 (2016).

    Article  CAS  Google Scholar 

  60. Fournier, L., Rivera Mirabal, D. M. & Hillmyer, M. A. Toward sustainable elastomers from the grafting-through polymerization of lactone-containing polyester macromonomers. Macromolecules 55, 1003–1014 (2022).

    Article  CAS  Google Scholar 

  61. Huang, J. et al. DAB-Pd-MAH: a versatile Pd(0) source for precatalyst formation, reaction screening and preparative-scale synthesis. ACS Catal. 11, 5636–5646 (2021).

    Article  CAS  Google Scholar 

  62. Mango, L. A. & Lenz, R. W. Hydrogenation of unsaturated polymers with diimide. Die Makromol. Chem. 163, 13–36 (1973).

    Article  CAS  Google Scholar 

  63. Rapagnani, R. M., Dunscomb, R. J., Fresh, A. A. & Tonks, I. A. Supporting data for tunable and recyclable polyesters from CO2 and butadiene (Data Repository for the University of Minnesota, 2021); https://doi.org/10.13020/sy3d-cf59

Download references

Acknowledgements

The funding for this work was provided by the NSF Center for Sustainable Polymers (no. CHE-1901635 to I.A.T.) at the University of Minnesota. Instrumentation for the University of Minnesota Chemistry NMR facility was supported by a grant through the National Institutes of Health (no. S10OD011952).

Author information

Authors and Affiliations

Authors

Contributions

R.M.R., R.J.D. and A.A.F. designed and performed all experiments and carried out data analysis. I.A.T. directed the research. R.M.R. and I.A.T. prepared the manuscript.

Corresponding author

Correspondence to Ian A. Tonks.

Ethics declarations

Competing interests

I.A.T. and R.M.R. are co-inventors on a provisional US patent covering the methods of polymerization and composition of matter presented in this work, filed through the University of Minnesota (application no. 63/156,135). R.J.D. and A.A.F. declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks James Eagan, Xufeng Ni and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Materials and Methods, Supplementary text, Figs. 1 to 35, Tables 1 to 5, references, OECD-301B report from Situ Biosciences

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rapagnani, R.M., Dunscomb, R.J., Fresh, A.A. et al. Tunable and recyclable polyesters from CO2 and butadiene. Nat. Chem. 14, 877–883 (2022). https://doi.org/10.1038/s41557-022-00969-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-022-00969-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing