Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Selective visible-light photocatalysis of acetylene to ethylene using a cobalt molecular catalyst and water as a proton source

Subjects

Abstract

The production of polymers from ethylene requires the ethylene feed to be sufficiently purified of acetylene contaminant. Accomplishing this task by thermally hydrogenating acetylene requires a high temperature, an external feed of H2 gas and noble-metal catalysts. It is not only expensive and energy-intensive, but also prone to overhydrogenating to ethane. Here we report a photocatalytic system that reduces acetylene to ethylene with ≥99% selectivity under both non-competitive (no ethylene co-feed) and competitive (ethylene co-feed) conditions, and near 100% conversion under the latter industrially relevant conditions. Our system uses a molecular catalyst based on earth-abundant cobalt operating under ambient conditions and sensitized by either [Ru(bpy)3]2+ or an inexpensive organic semiconductor (metal-free mesoporous graphitic carbon nitride) under visible light. These features and the use of water as a proton source offer advantages over current hydrogenation technologies with respect to selectivity and sustainability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Strategies for producing polymer-grade ethylene.
Fig. 2: Sensitizers and catalyst used in this study for the photoreduction of acetylene to ethylene and their performance.
Fig. 3: Mechanistic analysis for the photoreduction of acetylene to ethylene.
Fig. 4: Photoreduction of the ethylene/acetylene mixture.

Similar content being viewed by others

Data availability

All the data supporting the findings of this study are available within the Article and its Supplementary Information. Source data are provided with this paper.

References

  1. Sholl, D. S. & Lively, R. P. Seven chemical separations to change the world. Nature 532, 435–437 (2016).

    Article  PubMed  Google Scholar 

  2. Geyer, R., Jambeck, J. R. & Law, K. L. Production, use and fate of all plastics ever made. Sci. Adv. 3, 25–29 (2017).

    Article  CAS  Google Scholar 

  3. Borodziński, A. & Bond, G. C. Selective hydrogenation of ethyne in ethene-rich streams on palladium catalysts. Part 1. Effect of changes to the catalyst during reaction. Catal. Rev. Sci. Eng. 48, 91–144 (2006).

    Article  CAS  Google Scholar 

  4. Studt, F. et al. Identification of non-precious metal alloy catalysts for selective hydrogenation of acetylene. Science 320, 1320–1322 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Armbrüster, M. et al. Al13Fe4 as a low-cost alternative for palladium in heterogeneous hydrogenation. Nat. Mater. 11, 690–693 (2012).

    Article  PubMed  CAS  Google Scholar 

  6. Wang, Z. et al. Enhancement of alkyne semi-hydrogenation selectivity by electronic modification of platinum. ACS Catal. 10, 6763–6770 (2020).

    Article  CAS  Google Scholar 

  7. Chen, K. J. et al. Synergistic sorbent separation for one-step ethylene purification from a four-component mixture. Science 366, 241–246 (2019).

    Article  CAS  PubMed  Google Scholar 

  8. Li, L. et al. Ethane/ethylene separation in a metal-organic framework with iron-peroxo sites. Science 362, 443–446 (2018).

    Article  CAS  PubMed  Google Scholar 

  9. Howarth, R. W. & Jacobson, M. Z. How green is blue hydrogen? Energy Sci. Eng. 9, 1676–1687 (2021).

    Article  CAS  Google Scholar 

  10. Shi, R. et al. Room-temperature electrochemical acetylene reduction to ethylene with high conversion and selectivity. Nat. Catal. 4, 565–574 (2021).

    Article  CAS  Google Scholar 

  11. Bu, J. et al. Selective electrocatalytic semihydrogenation of acetylene impurities for the production of polymer-grade ethylene. Nat. Catal. 4, 557–564 (2021).

    Article  CAS  Google Scholar 

  12. Schultz, D. M. & Yoon, T. P. Solar synthesis: prospects in visible light photocatalysis. Science 343, 1239176 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Prier, C. K., Rankic, D. A. & MacMillan, D. W. C. Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem. Rev. 113, 5322–5363 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ciamician, G. The photochemistry of the future. Science 36, 385–394 (1912).

    Article  CAS  PubMed  Google Scholar 

  15. De Luna, P. et al. What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science 364, eaav3506 (2019).

    Article  PubMed  CAS  Google Scholar 

  16. Tavasoli, A. V., Preston, M. & Ozin, G. Photocatalytic dry reforming: what is it good for? Energy Environ. Sci. 14, 3098–3109 (2021).

    Article  CAS  Google Scholar 

  17. Zhou, S. et al. Pd single-atom catalysts on nitrogen-doped graphene for the highly selective photothermal hydrogenation of acetylene to ethylene. Adv. Mater. 31, 19005091 (2019).

    Google Scholar 

  18. Swearer, D. F. et al. Heterometallic antenna-reactor complexes for photocatalysis. Proc. Natl Acad. Sci. USA 113, 8916–8920 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tokel-Takvoryan, N. E., Hemingway, R. E. & Bard, A. J. Electrogenerated chemiluminescence. XIII. Electrochemical and electrogenerated chemiluminescence studies of ruthenium chelates. J. Am. Chem. Soc. 95, 6582–6589 (1973).

    Article  CAS  Google Scholar 

  20. Ghosh, I. et al. Organic semiconductor photocatalyst can bifunctionalize arenes and heteroarenes. Science 365, 360–366 (2019).

    Article  CAS  PubMed  Google Scholar 

  21. Savateev, A., Ghosh, I., König, B. & Antonietti, M. Photoredox catalytic organic transformations using heterogeneous carbon nitrides. Angew. Chem. Int. Ed. 57, 15936–15947 (2018).

    Article  CAS  Google Scholar 

  22. Call, A. et al. Highly efficient and selective photocatalytic CO2 reduction to CO in water by a cobalt porphyrin molecular catalyst. ACS Catal. 9, 4867–4874 (2019).

    Article  CAS  Google Scholar 

  23. Arcudi, F., Dordević, L., Nagasing, B., Stupp, S. I. & Weiss, E. A. Quantum dot-sensitized photoreduction of CO2 in water with turnover number >80,000. J. Am. Chem. Soc. 143, 18131–18138 (2021).

    Article  CAS  PubMed  Google Scholar 

  24. Fleischer, E. B. & Krishnamurthy, M. Reduction of acetylene and nitrogen by a cobalt-porphyrin system. J. Am. Chem. Soc. 94, 1382–1384 (1972).

    Article  CAS  PubMed  Google Scholar 

  25. Ichikawa, M., Sonoda, R. & Meshitsuka, S. Specific catalysis by Co(II)phthalocyanine-tetrasulfonate in the selective reduction of acetylene with sodium boronhydride. Chem. Lett. 2, 709–712 (1973).

    Article  Google Scholar 

  26. Fleischer, E. B. & Krishnamurthy, M. Relationships between porphyrin structure and reactivity. Ann. N. Y. Acad. Sci. 206, 32–46 (1973).

    Article  CAS  PubMed  Google Scholar 

  27. Kojima, M. & Matsunaga, S. The merger of photoredox and cobalt catalysis. Trends Chem. 2, 410–426 (2020).

    Article  CAS  Google Scholar 

  28. Bullock, R. M. et al. Using nature’s blueprint to expand catalysis with Earth-abundant metals. Science 369, eabc3183 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kohler, L. & Mulfort, K. L. Photoinduced electron transfer kinetics of linked Ru-Co photocatalyst dyads. J. Photochem. Photobiol. A Chem. 373, 59–65 (2019).

    Article  CAS  Google Scholar 

  30. Banks, R. G. S., Henderson, R. J. & Pratt, J. M. Reactions of nitrous oxide with some transition-metal complexes. Chem. Commun. 1967, 387–388 (1967).

    Google Scholar 

  31. Symoens, S. H. et al. State-of-the-art of coke formation during steam cracking: anti-coking surface technologies. Ind. Eng. Chem. Res. 57, 16117–16136 (2018).

    Article  CAS  Google Scholar 

  32. Pyper, J. W. & Long, F. A. Equilibrium in the deuterium exchange of acetylene and water. J. Chem. Phys. 41, 1890–1896 (1964).

    Article  CAS  Google Scholar 

  33. Pyper, J. W. & Liu, D. K. K. Hydrogen-deuterium exchange in acetylene and between acetylene and water. J. Chem. Phys. 67, 845–846 (1977).

    Article  CAS  Google Scholar 

  34. Beyene, B. B. & Hung, C. H. Photocatalytic hydrogen evolution from neutral aqueous solution by a water-soluble cobalt(II) porphyrin. Sustain. Energy Fuels 2, 2036–2043 (2018).

    Article  CAS  Google Scholar 

  35. Kamei, Y. et al. Silane- and peroxide-free hydrogen atom transfer hydrogenation using ascorbic acid and cobalt-photoredox dual catalysis. Nat. Commun. 12, 966 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Michiyuki, T. & Komeyama, K. Recent advances in four‐coordinated planar cobalt catalysis in organic synthesis. Asian J. Org. Chem. 9, 343–358 (2020).

    Article  CAS  Google Scholar 

  37. Ashley, K. R. & Leipoldt, J. G. Kinetic and equilibrium study of the reaction of (meso-tetrakis(p-sulfonatophenyl)porphyrinato)diaquocobaltate(III) with pyridine in aqueous solution. Inorg. Chem. 20, 2326–2333 (1981).

    Article  CAS  Google Scholar 

  38. Dodd, D. β-styrylcobaloximes: mechanism of formation from β-styryl halides and mechanism of cleavage by electrophiles. J. Chem. Soc. Perkin Trans. 2 1976, 1261–1267 (1976).

    Article  Google Scholar 

  39. Gupta, B. D. & Roy, S. Organocobaloximes: cobalt–carbon bond stability and synthesis. Inorg. Chim. Acta 146, 209–221 (1988).

    Article  CAS  Google Scholar 

  40. Gridnev, A. A., Ittel, S. D., Fryd, M. & Wayland, B. B. Formation of organocobalt porphyrin complexes by reactions of cobalt(II) porphyrins with azoisobutyronitrile and organic substrates. J. Chem. Soc. J. Chem. Soc. 1993, 1010–1011 (1993).

    Article  Google Scholar 

  41. De Brain, B., Dzik, W. I., Li, S. & Wayland, B. B. Hydrogen-atom transfer in reactions of organic radicals with [CoII(por)] (por = porphyrinato) and in subsequent addition of [Co(H)(por)] to olefins. Eur. J. Chem. A 15, 4312–4320 (2009).

    Article  CAS  Google Scholar 

  42. Li, G., Han, A., Pulling, M. E., Estes, D. P. & Norton, J. R. Evidence for formation of a Co–H bond from (H2O)2Co(dmgBF2)2 under H2: application to radical cyclizations. J. Am. Chem. Soc. 134, 14662–14665 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Delley, M. F. et al. Hydrogen on cobalt phosphide. J. Am. Chem. Soc. 141, 15390–15402 (2019).

    Article  CAS  PubMed  Google Scholar 

  44. Gnaim, S. et al. Cobalt-electrocatalytic HAT for functionalization of unsaturated C–C bonds. Nature 605, 687–695 (2022).

    Article  CAS  PubMed  Google Scholar 

  45. Arnett, R. L. & Crawford, B. L. The vibrational frequencies of ethylene. J. Chem. Phys. 18, 118–126 (1950).

    Article  CAS  Google Scholar 

  46. Miller, S. Notes—a comparison of the electrophilic reactivity of styrene and phenylacetylene. J. Org. Chem. 21, 247–248 (1956).

    Article  CAS  Google Scholar 

  47. Steinberger, B., Michman, M., Schwarz, H. & Höhne, G. Selective hydrogenation of the CC-triple bond in PhC≡CPh by tris(triphenylphosphine)cobalt activated NaBH4; deuterium tracing experiments. J. Organomet. Chem. 244, 283–288 (1983).

    Article  CAS  Google Scholar 

  48. Abdel-Rahman, M. K. & Trenary, M. Propyne hydrogenation over a Pd/Cu(111) single-atom alloy studied using ambient pressure infrared spectroscopy. ACS Catal. 10, 9716–9724 (2020).

    Article  CAS  Google Scholar 

  49. Ardo, S., Achey, D., Morris, A. J., Abrahamsson, M. & Meyer, G. J. Non-Nernstian two-electron transfer photocatalysis at metalloporphyrin–TiO2 interfaces. J. Am. Chem. Soc. 133, 16572–16580 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Center for Bio-Inspired Energy Science (CBES), an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Basic Energy Sciences, under award no. DE-SC0000989. This work made use of the IMSERC facility at Northwestern University, which has received support from the NIH (1S10OD012016-01/1S10RR019071-01A1), the Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (NSF ECCS-1542205), the State of Illinois and the International Institute for Nanotechnology (IIN), and the REACT Core facility at Northwestern University, funded by the US Department of Energy, Catalysis Science programme (DE-SC0001329) for the purchase of the GC-MS instrument. We thank S. Alayoglu and R. López-Arteaga for help with the gas-phase IR and emission lifetime measurements, respectively.

Dedication: We dedicate this work to Sir Fraser Stoddart on the occasion of his 80th birthday.

Author information

Authors and Affiliations

Authors

Contributions

F.A., L.Ð. and E.A.W. conceived the project, contributed to the experimental design and wrote the manuscript. E.A.W. directed the research. F.A. and L.Ð. designed and performed the experiments and analysed the results. F.A., L.Ð. and N.S. carried out the GC experiments. L.Ð. and S.I.S. designed and prepared the materials. E.A.W. and S.I.S. secured the funding. All authors contributed to manuscript preparation.

Corresponding author

Correspondence to Emily A. Weiss.

Ethics declarations

Competing interests

F.A., L.Ð., E.A.W. and S.I.S. are co-inventors of a patent application (no. PCT/US2022/026732) filed by Northwestern University on the photocatalytic reduction of acetylene to ethylene.

Peer review

Peer review information

Nature Chemistry thanks Sven Rau, Tierui Zhang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Experimental Section, Supplementary Figs. 1–24, Tables 1–6 and references.

Source data

Source Data Fig. 2

Underlying measured data

Source Data Fig. 3

Underlying measured data

Source Data Fig. 4

Underlying measured data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arcudi, F., Ðorđević, L., Schweitzer, N. et al. Selective visible-light photocatalysis of acetylene to ethylene using a cobalt molecular catalyst and water as a proton source. Nat. Chem. 14, 1007–1012 (2022). https://doi.org/10.1038/s41557-022-00966-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-022-00966-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing