Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Low-temperature liquid platinum catalyst


Insights into metal–matrix interactions in atomically dispersed catalytic systems are necessary to exploit the true catalytic activity of isolated metal atoms. Distinct from catalytic atoms spatially separated but immobile in a solid matrix, here we demonstrate that a trace amount of platinum naturally dissolved in liquid gallium can drive a range of catalytic reactions with enhanced kinetics at low temperature (318 to 343 K). Molecular simulations provide evidence that the platinum atoms remain in a liquid state in the gallium matrix without atomic segregation and activate the surrounding gallium atoms for catalysis. When used for electrochemical methanol oxidation, the surface platinum atoms in the gallium–platinum system exhibit an activity of \({\sim {2.8} \times {10^7}\,{{{\mathrm{mA}}}}\,{{{{\mathrm{mg}}}}_{{{{\mathrm{Pt}}}}}^{ - 1}}},\) three orders of magnitude higher than existing solid platinum catalysts. Such a liquid catalyst system, with a dynamic interface, sets a foundation for future exploration of high-throughput catalysis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental and computational description of the Ga–Pt catalysts.
Fig. 2: Oxidation of PG over Ga–Pt catalysts.
Fig. 3: Electrochemical oxidation of CH3OH over a Ga–Pt anode.
Fig. 4: Electronic structure analysis and possible pathway for the high catalytic activity of the liquid Ga–Pt system.

Data availability

Source data are provided with this paper.


  1. Cheng, N. et al. Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. Nat. Commun. 7, 13638 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fang, S. et al. Uncovering near-free platinum single-atom dynamics during electrochemical hydrogen evolution reaction. Nat. Commun. 11, 1029 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Qiao, B. et al. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 3, 634–641 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Xu, H., Cheng, D., Cao, D. & Zeng, X. C. A universal principle for a rational design of single-atom electrocatalysts. Nat. Catal. 1, 339–348 (2018).

    Article  CAS  Google Scholar 

  5. Xia, C. et al. General synthesis of single-atom catalysts with high metal loading using graphene quantum dots. Nat. Chem. 13, 887–894 (2021).

    Article  CAS  PubMed  Google Scholar 

  6. Wang, H. et al. Surpassing the single-atom catalytic activity limit through paired Pt–O–Pt ensemble built from isolated Pt1 atoms. Nat. Commun. 10, 3808 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Li, L. et al. Theoretical insights into single-atom catalysts. Chem. Soc. Rev. 49, 8156–8178 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. Wang, A., Li, J. & Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2, 65–81 (2018).

    Article  CAS  Google Scholar 

  9. Zhou, K. L. et al. Platinum single-atom catalyst coupled with transition metal/metal oxide heterostructure for accelerating alkaline hydrogen evolution reaction. Nat. Commun. 12, 3783 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hannagan, R. T., Giannakakis, G., Flytzani-Stephanopoulos, M. & Sykes, E. C. H. Single-atom alloy catalysis. Chem. Rev. 120, 12044–12088 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Upham, D. C. et al. Catalytic molten metals for the direct conversion of methane to hydrogen and separable carbon. Science 358, 917–921 (2017).

    Article  PubMed  CAS  Google Scholar 

  12. Taccardi, N. et al. Gallium-rich Pd–Ga phases as supported liquid metal catalysts. Nat. Chem. 9, 862–867 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Palmer, C. et al. Dry reforming of methane catalysed by molten metal alloys. Nat. Catal. 3, 83–89 (2020).

    Article  CAS  Google Scholar 

  14. Bauer, T. et al. Operando DRIFTS and DFT study of propane dehydrogenation over solid- and liquid-supported GaxPty catalysts. ACS Catal. 9, 2842–2853 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wolf, M. et al. Capturing spatially resolved kinetic data and coking of Ga-Pt supported catalytically active liquid metal solutions during propane dehydrogenation in situ. Faraday Discuss. 229, 359–377 (2021).

    Article  CAS  PubMed  Google Scholar 

  16. Raman, N. et al. Highly effective propane dehydrogenation using Ga-Rh supported catalytically active liquid metal solutions. ACS Catal. 9, 9499–9507 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu, H. et al. Solid–liquid phase transition induced electrocatalytic switching from hydrogen evolution to highly selective CO2 reduction. Nat. Catal. 4, 202–211 (2021).

    Article  CAS  Google Scholar 

  18. Esrafilzadeh, D. et al. Room temperature CO2 reduction to solid carbon species on liquid metals featuring atomically thin ceria interfaces. Nat. Commun. 10, 865 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Walbert, T. et al. In situ transmission electron microscopy analysis of thermally decaying polycrystalline platinum nanowires. ACS Nano 14, 11309–11318 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. Daeneke, T. et al. Liquid metals: fundamentals and applications in chemistry. Chem. Soc. Rev. 47, 4073–4111 (2018).

    Article  CAS  PubMed  Google Scholar 

  21. Zavabeti, A. et al. A liquid metal reaction environment for the room-temperature synthesis of atomically thin metal oxides. Science 358, 332–335 (2017).

    Article  PubMed  CAS  Google Scholar 

  22. Lin, Y., Genzer, J. & Dickey, M. D. Attributes, fabrication and applications of gallium-based liquid metal particles. Adv. Sci. 7, 2000192 (2020).

    Article  CAS  Google Scholar 

  23. Huang, W. et al. Highly active and durable methanol oxidation electrocatalyst based on the synergy of platinum–nickel hydroxide–graphene. Nat. Commun. 6, 10035 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Yatsenko, S. P., Rykova, L. N., Anikin, Y. A. & Dieva, É. N. The corrosion of group VIII metals in liquid gallium. Mater. Sci. 8, 310–313 (1974).

    Article  Google Scholar 

  25. Grabau, M. et al. Surface enrichment of Pt in Ga2O3 films grown on liquid Pt/Ga alloys. Surf. Sci. 651, 16–21 (2016).

    Article  CAS  Google Scholar 

  26. Tang, J. et al. Unique surface patterns emerging during solidification of liquid metal alloys. Nat. Nanotechnol. 16, 431–439 (2021).

    Article  CAS  PubMed  Google Scholar 

  27. Rahim, M. A. et al. Phenolic building blocks for the assembly of functional materials. Angew. Chem. Int. Ed. 58, 1904–1927 (2019).

    Article  CAS  Google Scholar 

  28. Huang, L. et al. Single-atom nanozymes. Sci. Adv. 5, eaav5490 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gao, L. et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2, 577–583 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Yang, J., Cohen Stuart, M. A. & Kamperman, M. Jack of all trades: versatile catechol crosslinking mechanisms. Chem. Soc. Rev. 43, 8271–8298 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Sileika, T. S. et al. Colorless multifunctional coatings inspired by polyphenols found in tea, chocolate and wine. Angew. Chem. Int. Ed. 52, 10766–10770 (2013).

    Article  CAS  Google Scholar 

  32. Centurion, F. et al. Liquid metal-triggered assembly of phenolic nanocoatings with antioxidant and antibacterial properties. ACS Appl. Nano Mater. 4, 2987–2998 (2021).

    Article  CAS  Google Scholar 

  33. Dickey, M. D. Emerging applications of liquid metals featuring surface oxides. ACS Appl. Mater. Interfaces 6, 18369–18379 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bilodeau, R. A., Zemlyanov, D. Y. & Kramer, R. K. Liquid metal switches for environmentally responsive electronics. Adv. Mater. Interfaces 4, 1600913 (2017).

    Article  Google Scholar 

  35. Pourbaix, M. Atlas Of Electrochemical Equilibria In Aqueous Solutions (National Association of Corrosion Engineers, 1974).

  36. Mowry, S. & Ogren, P. J. Kinetics of methylene blue reduction by ascorbic acid. J. Chem. Educ. 76, 970 (1999).

    Article  CAS  Google Scholar 

  37. Hao, Yu,E., Scott, K. & Reeve, R. W. A study of the anodic oxidation of methanol on Pt in alkaline solutions. J. Electroanal. Chem. 547, 17–24 (2003).

    Article  CAS  Google Scholar 

  38. Tripković, A. V., Popović, K. D., Momčilović, J. D. & Draić, D. M. Kinetic and mechanistic study of methanol oxidation on a Pt(111) surface in alkaline media. J. Electroanal. Chem. 418, 9–20 (1996).

    Article  Google Scholar 

  39. Zhang, Z. et al. Single-atom catalyst for high-performance methanol oxidation. Nat. Commun. 12, 5235 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mallat, T. & Baiker, A. Oxidation of alcohols with molecular oxygen on solid catalysts. Chem. Rev. 104, 3037–3058 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Huheey, J. E., Keiter, E. A., Keiter, R. L. & Medhi, O. K. Inorganic Chemistry: Principles of Structure and Reactivity (Pearson Education, 2006).

  42. Armbrüster, M., Schlögl, R. & Grin, Y. Intermetallic compounds in heterogeneous catalysis—a quickly developing field. Sci. Technol. Adv. Mater. 15, 034803 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Rodriguez, J. A. Interactions in bimetallic bonding: electronic and chemical properties of PdZn surfaces. J. Phys. Chem. 98, 5758–5764 (1994).

    Article  CAS  Google Scholar 

  44. Lim, S.-C., Chan, C.-Y., Chen, K.-T. & Tuan, H.-Y. Synthesis of popcorn-shaped gallium-platinum (GaPt3) nanoparticles as highly efficient and stable electrocatalysts for hydrogen evolution reaction. Electrochim. Acta 297, 288–296 (2019).

    Article  CAS  Google Scholar 

  45. Kumar, V. B. et al. Sonochemical formation of Ga-Pt intermetallic nanoparticles embedded in graphene and its potential use as an electrocatalyst. Electrochim. Acta 190, 659–667 (2016).

    Article  CAS  Google Scholar 

  46. Ryu, J. & Surendranath, Y. Tracking electrical fields at the Pt/H2O interface during hydrogen catalysis. J. Am. Chem. Soc. 141, 15524–15531 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wagner, A., Sahm, C. D. & Reisner, E. Towards molecular understanding of local chemical environment effects in electro- and photocatalytic CO2 reduction. Nat. Catal. 3, 775–786 (2020).

    Article  CAS  Google Scholar 

  48. Zhang, M., Wang, M., Xu, B. & Ma, D. How to measure the reaction performance of heterogeneous catalytic reactions reliably. Joule 3, 2876–2883 (2019).

    Article  Google Scholar 

Download references


We thank the Australian Research Council (ARC) for a Laureate Fellowship grant (FL180100053) and Discovery Early Career Researcher Award (DE210101162) for the financial support of this study. We acknowledge the assistance of supercomputing resources from the National Computational Infrastructure (NCI), supported by the Australian Government, and assistance from Pawsey Supercomputer Centre. We also acknowledge the technical assistance from the Solid State & Elemental Analysis Unit (Mark Wainwright Analytical Centre, UNSW Sydney).

Author information

Authors and Affiliations



M.A.R. and K.K.-Z. conceived the idea. M.A.R. and Jianbo Tang synthesized the catalysts. M.A.R. designed and performed the experiments with the help of Jianbo Tang, Junma Tang, F.C., Z.C., M.B., M.M., F.-M.A. and T.D. The molecular dynamic simulations were performed by A.J.C., N.M., C.F.M. and S.P.R. The DFT calculations were performed by P.V.K. The phase diagram was prepared by P.K. The draft manuscript was prepared with the help of R.B.K. and K.K.-Z. All the authors discussed the results and contributed to preparing the final draft of the Paper.

Corresponding authors

Correspondence to Md. Arifur Rahim or Kourosh Kalantar-Zadeh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Wenyue Guo, Frédéric Jaouen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Figs. 1–19, Tables 1 and 2, Notes 1 and 2 and references.

Source data

Source Data Fig. 1

Source data for Fig. 1 including solubility data of Pt in liquid Ga, initial and final configurations of the AIMD simulations, and pairwise probability distribution of Pt atoms in Ga matrix in the bulk and interface

Source Data Fig. 2

Source data for Fig. 2 including absorbance at 500 nm for different catalysts over time (PG oxidation), and initial and final configurations of the AIMD simulations

Source Data Fig. 3f

DFT configurations for the methanol oxidation

Source Data Fig. 4a

Density of states calculation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahim, M.A., Tang, J., Christofferson, A.J. et al. Low-temperature liquid platinum catalyst. Nat. Chem. 14, 935–941 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing