Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Low-valent tungsten redox catalysis enables controlled isomerization and carbonylative functionalization of alkenes


The controlled isomerization and functionalization of alkenes is a cornerstone achievement in organometallic catalysis that is now widely used throughout industry. In particular, the addition of CO and H2 to an alkene, also known as the oxo-process, is used in the production of linear aldehydes from crude alkene feedstocks. In these catalytic reactions, isomerization is governed by thermodynamics, giving rise to functionalization at the most stable alkylmetal species. Despite the ubiquitous industrial applications of tandem alkene isomerization/functionalization reactions, selective functionalization at internal positions has remained largely unexplored. Here we report that the simple W(0) precatalyst W(CO)6 catalyses the isomerization of alkenes to unactivated internal positions and subsequent hydrocarbonylation with CO. The six- to seven-coordinate geometry changes that are characteristic of the W(0)/W(II) redox cycle and the conformationally flexible directing group are key factors in allowing isomerization to take place over multiple positions and stop at a defined unactivated internal site that is primed for in situ functionalization.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Overview of tungsten reactivity and isomerization–carbonylation reactions.
Fig. 2: The synthesis and reactivity of model W(II) intermediates was evaluated.
Fig. 3: Mechanistic experiments and deuterium-labelling studies.
Fig. 4: Computed reaction energy profile of the isomerization–carbonylation of 1a.

Data availability

All data generated or analysed during this study are included in this article (and its Supplementary Information). The structures of W-2, W-3, W-3′, W-4 and 2u in the solid state were determined by single-crystal X-ray diffraction and the crystallographic data have been deposited with the Cambridge Crystallographic Data Centre: CCDC 2020047 (W-2), 2050458 (W-3), 2045639 (W-3′), 2110274 (W-4), 2008992 (2u). Copies of the data can be obtained free of charge via


  1. Trnka, T. M. & Grubbs, R. H. The development of L2X2Ru=CHR olefin metathesis catalysts: an organometallic success story. Acc. Chem. Res. 34, 18–29 (2001).

    CAS  Article  Google Scholar 

  2. Schrock, R. R. Multiple metal–carbon bonds for catalytic metathesis reactions (Nobel lecture). Angew. Chem. Int. Ed. 45, 3748–3759 (2006).

    CAS  Article  Google Scholar 

  3. Masuda, T. & Higashimura, T. Synthesis of high polymers from substituted acetylenes: exploitation of molybdenum- and tungsten-based catalysts. Acc. Chem. Res. 17, 51–56 (1984).

    CAS  Article  Google Scholar 

  4. Liebov, B. K. & Harman, W. D. Group 6 dihapto-coordinate dearomatization agents for organic synthesis. Chem. Rev. 117, 13721–13755 (2017).

    CAS  Article  Google Scholar 

  5. Smith, J. A. et al. Preparation of cyclohexene isotopologues and stereoisotopomers from benzene. Nature 581, 288–293 (2020).

    CAS  Article  Google Scholar 

  6. Adrjan, B. & Szymanska-Buzar, T. Photochemical reactions of [W(CO)44-nbd)] with hydrosilanes: generation of new hydrido complexes of tungsten and their reactivity. J. Organomet. Chem. 693, 2163–2170 (2008).

    CAS  Article  Google Scholar 

  7. Handzlik, J., Kochel, A. & Szymańska-Buzar, T. H–Ge bond activation by tungsten carbonyls: an experimental and theoretical study. Polyhedron 31, 622–631 (2012).

    CAS  Article  Google Scholar 

  8. Chakraborty, S. & Berke, H. Homogeneous hydrogenation of nitriles catalyzed by molybdenum and tungsten amides. ACS Catal. 4, 2191–2194 (2014).

    CAS  Article  Google Scholar 

  9. Wrighton, M., Hammond, G. S. & Gray, H. B. Group VI metal carbonyl photoassisted isomerization of olefins. J. Organomet. Chem. 70, 283–301 (1974).

    CAS  Article  Google Scholar 

  10. Moberg, C. in Transition Metal Catalyzed Enantioselective Allylic Substitution in Organic Synthesis (ed. Kazmaier, U.) 209–234 (Springer, 2011).

  11. Hoffmann, R., Beier, B. F., Muetterties, E. L. & Rossi, A. R. Seven-coordination. A molecular orbital exploration of structure, stereochemistry, and reaction dynamics. Inorg. Chem. 16, 511–522 (1977).

    CAS  Article  Google Scholar 

  12. Hoffmann, R., Wilker, C. N., Lippard, S. J., Templeton, J. L. & Bower, D. C. Theoretical prescription for reductive coupling of CO or CNR ligands. J. Am. Chem. Soc. 105, 146–147 (1983).

    CAS  Article  Google Scholar 

  13. Lam, C. T., Corfield, P. W. R. & Lippard, S. J. Reductive coupling of adjacent ligands in a seven-coordinate molybdenum(II) isocyanide complex. J. Am. Chem. Soc. 99, 617–618 (1977).

    CAS  Article  Google Scholar 

  14. Giandomenico, C. M., Lam, C. T. & Lippard, S. J. Reductive coupling of coordinated alkyl isocyanides in seven-coordinate molybdenum(II) and tungsten(II) complexes. Removal of the coupled ligand as an oxamide. J. Am. Chem. Soc. 104, 1263–1271 (1982).

    CAS  Article  Google Scholar 

  15. Kazlauskas, R. J. & Wrighton, M. S. Photogeneration of intermediates involved in catalytic cycles. β-Hydride elimination from the 16-electron alkyl species generated by irradiation of tricarbonyl(η5-cyclopentadienyl)(n-pentyl)tungsten(II). J. Am. Chem. Soc. 102, 1727–1730 (1980).

    CAS  Article  Google Scholar 

  16. Kazlauskas, R. J. & Wrighton, M. S. Photochemistry of metal carbonyl alkyls. Study of thermal β-hydrogen transfer in photogenerated, 16-valence-electron alkyldicarbonylcyclopentadienylmolybdenum and -tungsten complexes. J. Am. Chem. Soc. 104, 6005–6015 (1982).

    CAS  Article  Google Scholar 

  17. Vilches-Herrera, M., Domke, L. & Börner, A. Isomerization–hydroformylation tandem reactions. ACS Catal. 4, 1706–1724 (2014).

    CAS  Article  Google Scholar 

  18. Franke, R., Selent, D. & Börner, A. Applied hydroformylation. Chem. Rev. 112, 5675–5732 (2012).

    CAS  Article  Google Scholar 

  19. Whiteker, G. T., Cobley, C. J. in Organometallics as Catalysts in the Fine Chemical Industry (eds Beller, M. & Blaser, H. U.) 35–46 (Springer, 2012).

  20. Vasseur, A., Bruffaerts, J. & Marek, I. Remote functionalization through alkene isomerization. Nat. Chem. 8, 209–219 (2016).

    CAS  Article  Google Scholar 

  21. Sommer, H., Juliá-Hernández, F., Martin, R. & Marek, I. Walking metals for remote functionalization. ACS Cent. Sci. 4, 153–165 (2018).

    CAS  Article  Google Scholar 

  22. Kochi, T., Hamasaki, T., Aoyama, Y., Kawasaki, J. & Kakiuchi, F. Chain-walking strategy for organic synthesis: catalytic cycloisomerization of 1,n-dienes. J. Am. Chem. Soc. 134, 16544–16547 (2012).

    CAS  Article  Google Scholar 

  23. Sommer, H., Weissbrod, T. & Marek, I. A tandem iridium-catalyzed “chain-walking”/Cope rearrangement sequence. ACS Catal. 9, 2400–2406 (2019).

    CAS  Article  Google Scholar 

  24. Jun, C.-H., Lee, H. & Lim, S.-G. The C-C bond activation and skeletal rearrangement of cycloalkanone imine by Rh(I) catalysts. J. Am. Chem. Soc. 123, 751–752 (2001).

    CAS  Article  Google Scholar 

  25. O’Duill, M. L. et al. Tridentate directing groups stabilize 6-membered palladacycles in catalytic alkene hydrofunctionalization. J. Am. Chem. Soc. 139, 15576–15579 (2017).

    Article  Google Scholar 

  26. McCusker, J. E., Logan, J. & McElwee-White, L. Oxidative carbonylation of primary amines to ureas using tungsten carbonyl catalysts. Organometallics 17, 4037–4041 (1998).

    CAS  Article  Google Scholar 

  27. Breit, B. in Directed Metallation (ed. Chatani, N.) 145–168 (Springer, 2007).

  28. Chen, X., Rao, W., Yang, T. & Koh, M. J. Alkyl halides as both hydride and alkyl sources in catalytic regioselective reductive olefin hydroalkylation. Nat. Commun. 11, 5857 (2020).

    CAS  Article  Google Scholar 

  29. Lv, H. et al. Nickel-catalyzed intermolecular oxidative Heck arylation driven by transfer hydrogenation. Nat. Commun. 10, 5025 (2019).

    Article  Google Scholar 

  30. Inoue, S., Shiota, H., Fukumoto, Y. & Chatani, N. Ruthenium-catalyzed carbonylation at ortho C–H bonds in aromatic amides leading to phthalimides: C–H bond activation utilizing a bidentate system. J. Am. Chem. Soc. 131, 6898–6899 (2009).

    CAS  Article  Google Scholar 

  31. Wrighton, M. Photochemistry of metal carbonyls. Chem. Rev. 74, 401–430 (1974).

    CAS  Article  Google Scholar 

  32. Ditri, T. B., Moore, C. E., Rheingold, A. L. & Figueroa, J. S. Oxidative decarbonylation of m-terphenyl isocyanide complexes of molybdenum and tungsten: precursors to low-coordinate isocyanide complexes. Inorg. Chem. 50, 10448–10459 (2011).

    CAS  Article  Google Scholar 

  33. Corey, E. J., Cheng, X. M. The Logic of Chemical Synthesis (Wiley, 1989).

  34. Darensbourg, D. J. et al. A kinetic investigation of carbon dioxide insertion processes involving anionic tungsten-alkyl and -aryl derivatives: effects of carbon dioxide pressure, counterions, and ancillary ligands. Comparisons with migratory carbon monoxide insertion processes. J. Am. Chem. Soc. 107, 7463–7473 (1985).

    CAS  Article  Google Scholar 

  35. Buffin, B. P., Poss, M. J., Arif, A. M. & Richmond, T. G. Synthesis and reactivity of a tungsten(0) anion stabilized by chelating tertiary amines. The oxidative addition and reductive elimination of a carbon–tin bond at tungsten. Inorg. Chem. 32, 3805–3806 (1993).

    CAS  Article  Google Scholar 

  36. Biswas, S. Mechanistic understanding of transition-metal-catalyzed olefin isomerization: metal-hydride insertion–elimination vs. π-allyl pathways. Comments Inorg. Chem. 35, 300–330 (2015).

    CAS  Article  Google Scholar 

  37. Szymańska-Buzar, T., Jaroszewski, M., Wilgocki, M. & Ziółkowski, J. J. Reactivity of bis(alkene) tetracarbonyl complexes of tungsten: evidence for alkene to π-allyl hydride rearrangement. J. Mol. Cat. A 112, 203–210 (1996).

    Article  Google Scholar 

  38. Sheng, Y., Musaev, D. G., Reddy, K. S., McDonald, F. E. & Morokuma, K. Computational studies of tungsten-catalyzed endo-selective cycloisomerization of 4-pentyn-1-ol. J. Am. Chem. Soc. 124, 4149–4157 (2002).

    CAS  Article  Google Scholar 

  39. Kochi, T., Kanno, S. & Kakiuchi, F. Nondissociative chain walking as a strategy in catalytic organic synthesis. Tetrahedron Lett. 60, 150938 (2019).

    CAS  Article  Google Scholar 

  40. Jankins, T., Martin-Montero, R., Coopper, P., Martin, R. & Engle, K. M. Low-valent tungsten catalysis enables site-selective isomerization–hydroboration of unactivated alkenes. J. Am. Chem. Soc. 143, 14981–14986 (2021).

    CAS  Article  Google Scholar 

Download references


B. Sanchez and E. Sturgell (Scripps Research Automated Synthesis Facility) are acknowledged for HPLC and chiral SFC analysis. H. Nguyen, K. McClymont, T. Huffman and C. Bi are acknowledged for donation of various starting materials. We also thank J. Vantourout, C. Landis, J. Figueroa and H. Renata for helpful discussions. Financial support for this work was provided by the National Institutes of Health R35GM125052 (K.M.E.), R35GM128779 (P.L) and 1S10OD025208 (J.S.C.). We acknowledge USTC for sponsoring Z.-Y.Q. with a summer exchange scholarship. DFT calculations were performed at the Center for Research Computing at the University of Pittsburgh, the Frontera supercomputer at the Texas Advanced Computing Center, and the Extreme Science and Engineering Discovery Environment (XSEDE) supported by the NSF.

Author information

Authors and Affiliations



T.C.J. carried out all the experiments and data analysis. Z.-Y.Q. carried out synthesis of various alkene starting materials. J.S.C. helped design and perform pressurized experiments. M.G. carried out collection and analysis of X-ray data. W.C.B, Y.Z. and P.L. carried out computation work. T.C.J., P.L. and K.M.E. wrote the manuscript with input from all authors.

Corresponding authors

Correspondence to Peng Liu or Keary M. Engle.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Graham Dobereiner and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Data regarding reaction optimization, synthetic and experimental procedures, full characterization data including NMR spectra X-ray crystallographic data, 26 supplementary figures, and 38 supplementary tables.

Supplementary Data 1

xyz coordinates for DFT calculations.

Supplementary Data 2

Original NMR data in MNova format.

Supplementary Data 3

Crystallographic data for compound W-2; CCDC reference 2020047.

Supplementary Data 4

Crystallographic data for compound W-3; CCDC reference 2050458.

Supplementary Data 5

Crystallographic data for compound W-3’; CCDC reference 2045639.

Supplementary Data 6

Crystallographic data for compound W-4; CCDC reference 2110274.

Supplementary Data 7

Crystallographic data for compound 2u; CCDC 2008992.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jankins, T.C., Bell, W.C., Zhang, Y. et al. Low-valent tungsten redox catalysis enables controlled isomerization and carbonylative functionalization of alkenes. Nat. Chem. 14, 632–639 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing