Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

An autonomously oscillating supramolecular self-replicator


A key goal of chemistry is to develop synthetic systems that mimic biology, such as self-assembling, self-replicating models of minimal life forms. Oscillations are often observed in complex biological networks, but oscillating, self-replicating species are unknown, and how to control autonomous supramolecular-level oscillating systems is also not yet established. Here we show how a population of self-assembling self-replicators can autonomously oscillate, so that simple micellar species repeatedly appear and disappear in time. The interplay of molecular and supramolecular events is key to observing oscillations: the repeated formation and disappearance of compartments is connected to a reaction network where molecular-level species are formed and broken down. The dynamic behaviour of our system across different length scales offers the opportunities for mass transport, as we demonstrate via reversible dye uptake. We believe these findings will inspire new biomimetic systems and may unlock nanotechnology systems such as (supra)molecular pumps, where compartment formation is controlled in time and space.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Oscillating components in the out-of-equilibrium, supramolecular reaction network.
Fig. 2: Probing the destruction reaction in the oscillating system by continuous addition of a preformed second replicator.
Fig. 3: Effect of the amount of destruction catalyst, oxidant supply and amount of thiol on the oscillations.
Fig. 4: Supramolecular oscillations can be coupled to a secondary process.

Data availability

The source data underlying Figs. 1b, 2b, 3a–e and 4 are provided as a source data file. Source data are provided with this paper.


  1. Goldbeter, A. Biochemical Oscillations and Cellular Rhythms (Cambridge Univ. Press, 1996).

  2. Cao, Y. X. L., Lopatkin, A. & You, L. C. Elements of biological oscillations in time and space. Nat. Struct. Mol. Biol. 23, 1030–1034 (2016).

    CAS  Article  Google Scholar 

  3. Ruiz-Mirazo, K., Briones, C. & de la Escosura, A. Prebiotic systems chemistry: new perspectives for the origins of life. Chem. Rev. 114, 285–366 (2014).

    CAS  Article  Google Scholar 

  4. Lotka, A. J. Undamped oscillations derived from the law of mass action. J. Am. Chem. Soc. 42, 1595–1599 (1920).

    CAS  Article  Google Scholar 

  5. Volterra, V. Fluctuations in the abundance of a species considered mathematically. Nature 118, 558–560 (1926).

    Article  Google Scholar 

  6. Epstein, I. R. & Showalter, K. Nonlinear chemical dynamics: oscillations, patterns, and chaos. J. Phys. Chem. 100, 13132–13147 (1996).

    CAS  Article  Google Scholar 

  7. van Rossum, S. A. P., Tena-Solsona, M., van Esch, J. H., Eelkema, R. & Boekhoven, J. Dissipative out-of-equilibrium assembly of man-made supramolecular materials. Chem. Soc. Rev. 46, 5519–5535 (2017).

    Article  Google Scholar 

  8. Ashkenasy, G., Hermans, T. M., Otto, S. & Taylor, A. F. Systems chemistry. Chem. Soc. Rev. 46, 2543–2554 (2017).

    CAS  Article  Google Scholar 

  9. Kim, Y. S., Tamate, R., Akimoto, A. M. & Yoshida, R. Recent developments in self-oscillating polymeric systems as smart materials: from polymers to bulk hydrogels. Mater. Horiz. 4, 38–54 (2017).

    CAS  Article  Google Scholar 

  10. Chen, I. C. et al. Shape- and size-dependent patterns in self-oscillating polymer gels. Soft Matter 7, 3141–3146 (2011).

    CAS  Article  Google Scholar 

  11. Yoshizawa, T. et al. Fabrication of self-oscillating micelles with a built-in oxidizing agent. Angew. Chem. Int. Ed. 59, 3871–3875 (2020).

    CAS  Article  Google Scholar 

  12. Wang, G. T. et al. The fabrication of a supra-amphiphile for dissipative self-assembly. Chem. Sci. 7, 1151–1155 (2016).

    CAS  Article  Google Scholar 

  13. Lagzi, I., Kowalczyk, B., Wang, D. W. & Grzybowski, B. A. Nanoparticle oscillations and fronts. Angew. Chem. Int. Ed. 49, 8616–8619 (2010).

    CAS  Article  Google Scholar 

  14. Semenov, S. N. et al. Rational design of functional and tunable oscillating enzymatic networks. Nat. Chem. 7, 160–165 (2015).

    CAS  Article  Google Scholar 

  15. Semenov, S. N. et al. Autocatalytic, bistable, oscillatory networks of biologically relevant organic reactions. Nature 537, 656–660 (2016).

    CAS  Article  Google Scholar 

  16. Cafferty, B. J. et al. Robustness, entrainment, and hybridization in dissipative molecular networks, and the origin of life. J. Am. Chem. Soc. 141, 8289–8295 (2019).

    CAS  Article  Google Scholar 

  17. Wagner, N. & Ashkenasy, G. Rhythm before life. Nat. Chem. 11, 681–683 (2019).

    CAS  Article  Google Scholar 

  18. Leira-Iglesias, J., Tassoni, A., Adachi, T., Stich, M. & Hermans, T. M. Oscillations, travelling fronts and patterns in a supramolecular system. Nat. Nanotechnol. 13, 1021–1027 (2018).

    CAS  Article  Google Scholar 

  19. Green, L. N. et al. Autonomous dynamic control of DNA nanostructure self-assembly. Nat. Chem. 11, 510–520 (2019).

    CAS  Article  Google Scholar 

  20. Srinivas, N., Parkin, J., Seelig, G., Winfree, E. & Soloveiehile, D. Enzyme-free nucleic acid dynamical systems. Science 358, eaal2052 (2017).

    Article  Google Scholar 

  21. Morrow, S. M., Colomer, I. & Fletcher, S. P. A chemically fuelled self-replicator. Nat. Commun. 10, 1011 (2019).

    Article  Google Scholar 

  22. Lebedeva, M. A., Palmieri, E., Kukura, P. & Fletcher, S. P. Emergence and rearrangement of dynamic supramolecular aggregates visualized by interferometric scattering microscopy. ACS Nano 14, 11160–11168 (2020).

    CAS  Article  Google Scholar 

  23. Bachmann, P. A., Luisi, P. L. & Lang, J. Autocatalytic self-replicating micelles as models for prebiotic structures. Nature 357, 57–59 (1992).

    CAS  Article  Google Scholar 

  24. Bissette, A. J. & Fletcher, S. P. Mechanisms of Autocatalysis. Angew. Chem. Int. Ed. 52, 12800–12826 (2013).

    CAS  Article  Google Scholar 

  25. Engwerda, A. H. J. et al. Coupled metabolic cycles allow out-of-equilibrium autopoietic vesicle replication. Angew. Chem. Int. Ed. 59, 20361–20366 (2020).

    CAS  Article  Google Scholar 

  26. Kukura, P. et al. High-speed nanoscopic tracking of the position and orientation of a single virus. Nat. Methods 6, 923–927 (2009).

    CAS  Article  Google Scholar 

  27. Young, G. et al. Quantitative mass imaging of single biological macromolecules. Science 360, 423–427 (2018).

    CAS  Article  Google Scholar 

  28. Szostak, J. W., Bartel, D. P. & Luisi, P. L. Synthesizing life. Nature 409, 387–390 (2001).

    CAS  Article  Google Scholar 

  29. Dzieciol, A. J. & Mann, S. Designs for life: protocell models in the laboratory. Chem. Soc. Rev. 41, 79–85 (2012).

    CAS  Article  Google Scholar 

  30. Plys, A. J. & Kingston, R. E. Dynamic condensates activate transcription Transcriptional components exhibit transient phase separation to drive gene activation. Science 361, 329–330 (2018).

    CAS  Article  Google Scholar 

  31. Altenburg, W. J. et al. Programmed spatial organization of biomacromolecules into discrete, coacervate-based protocells. Nat. Commun. 11, 6282 (2020).

    CAS  Article  Google Scholar 

  32. Sabari, B. R. et al. Coactivator condensation at super-enhancers links phase separation and gene control. Science 361, eaar3958 (2018).

    Article  Google Scholar 

  33. Boeynaems, S. et al. Protein phase separation: a new phase in cell biology. Trends Cell Biol. 28, 420–435 (2018).

    CAS  Article  Google Scholar 

  34. Taylor, R. C., Cullen, S. P. & Martin, S. J. Apoptosis: controlled demolition at the cellular level. Nat. Rev. Mol. Cell Biol. 9, 231–241 (2008).

    CAS  Article  Google Scholar 

  35. Grzybowski, B. A. & Huck, W. T. S. The nanotechnology of life-inspired systems. Nat. Nanotechnol. 11, 584–591 (2016).

    Article  Google Scholar 

  36. He, X. M. et al. Synthetic homeostatic materials with chemo-mechano-chemical self-regulation. Nature 487, 214–218 (2012).

    CAS  Article  Google Scholar 

  37. Lerch, M. M., Grinthal, A. & Aizenberg, J. Viewpoint: homeostasis as inspiration-toward interactive materials. Adv. Mater. 32, 1905554 (2020).

    CAS  Article  Google Scholar 

  38. Hwang, I. et al. Audible sound-controlled spatiotemporal patterns in out-of-equilibrium systems. Nat. Chem. 12, 808–813 (2020).

    CAS  Article  Google Scholar 

  39. Mandelkow, E., Mandelkow, E. M., Hotani, H., Hess, B. & Muller, S. C. Spatial patterns from oscillating microtubules. Science 246, 1291–1293 (1989).

    CAS  Article  Google Scholar 

Download references


The authors wish to thank E. Foley for help with iSCAT measurements and L. Carrique for performing cryo-transmission electron microscopy measurements. The authors thank the ERC (Consolidator Grant, Autocat, 681491) for funding. M.G.H. thanks the EPSRC Centre for Doctoral Training in Synthesis for Biology and Medicine (EP/L015838/1) for a studentship, generously supported by AstraZeneca, Diamond Light Source, Defence Science and Technology Laboratory, Evotec, GlaxoSmithKline, Janssen, Novartis, Pfizer, Syngenta, Takeda, UCB and Vertex. This work used the OPIC electron microscopy facility which is supported by a Wellcome JIF award (060208/Z/00/Z) and a Wellcome equipment grant (093305/Z/10/Z).

Author information

Authors and Affiliations



M.G.H. and A.H.J.E. performed the experiments. R.J.H.S. performed preliminary experiments. M.G.H., A.H.J.E. and S.P.F. contributed to designing and analysing the experiments and writing and editing the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Stephen P. Fletcher.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods and synthesis, discussion and additional data.

Supplementary Video 1

Video of the visual oscillations seen when incorporating a hydrophobic dye (250× speed). Reaction is sampled for UPLC analysis.

Supplementary Video 2

Video of the visual oscillations seen when incorporating a hydrophobic dye (duplicate reaction, 250× speed). Reaction is not sampled or disturbed.

Source data

Source Data Fig. 1

Raw numerical data for graph(s) in Figure 1

Source Data Fig. 2

Raw numerical data for graph(s) in Figure 2

Source Data Fig. 3

Raw numerical data for graph(s) in Figure 3

Source Data Fig. 4

Raw numerical data for graph(s) in Figure 4

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Howlett, M.G., Engwerda, A.H.J., Scanes, R.J.H. et al. An autonomously oscillating supramolecular self-replicator. Nat. Chem. 14, 805–810 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing