Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Binding methane to a metal centre

Abstract

The σ-alkane complexes of transition metals, which contain an essentially intact alkane molecule weakly bound to the metal, have been well established as crucial intermediates in the activation of the strong C–H σ-bonds found in alkanes. Methane, the simplest alkane, binds even more weakly than larger alkanes. Here we report an example of a long-lived methane complex formed by directly binding methane as an incoming ligand to a reactive organometallic complex. Photo-ejection of carbon monoxide from a cationic osmium–carbonyl complex dissolved in an inert hydrofluorocarbon solvent saturated with methane at −90 °C affords an osmium(II) complex, [η5-CpOs(CO)2(CH4)]+, containing methane bound to the metal centre. Nuclear magnetic resonance (NMR) spectroscopy confirms the identity of the σ-methane complex and shows that the four protons of the metal-bound methane are in rapid exchange with each other. The methane ligand has a characteristically shielded 1H NMR resonance (δ –2.16), and the highly shielded carbon resonance (δ –56.3) shows coupling to the four attached protons (1JC–H = 127 Hz). The methane complex has an effective half-life of about 13 hours at –90 °C.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Typical generalized pathway for C–H activation of an alkane.
Fig. 2: Two approaches to the formation of a complex with a coordinated methane ligand.
Fig. 3: An expansion of the 700 MHz 1H–13C heteronuclear single quantum coherence NMR spectrum of 2-13CH4+ in HFP at –90 °C.
Fig. 4: Using nOe to correlate 1H NMR resonances from Cp and methane ligands.
Fig. 5: Potential binding modes of methane to a transition metal centre.
Fig. 6: A geometry-optimized structure of 2-CH4+ with a table highlighting selected bond lengths and predicted coupling constants from DFT calculations.

Data availability

The authors declare that the data supporting the findings of this study are available within the paper and its Supplementary Information files.

References

  1. IEA. Methane Tracker 2021 https://www.iea.org/reports/methane-tracker-2021 (2021).

  2. Durrani, J. Homogeneous C–H activation. Chemistry World https://www.chemistryworld.com/holy-grails/the-grails/c-h-bond-activation (2020).

  3. Labinger, J. A. & Bercaw, J. E. Understanding and exploiting C–H bond activation. Nature 417, 507–514 (2002).

    CAS  PubMed  Article  Google Scholar 

  4. Brookhart, M., Green, M. L. H. & Parkin, G. Agostic interactions in transition metal compounds. Proc. Natl Acad. Sci. USA 104, 6908–6914 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. McGrady, G. S. & Guilera, G. The multifarious world of transition metal hydrides. Chem. Soc. Rev. 32, 383–392 (2003).

    CAS  PubMed  Article  Google Scholar 

  6. Young, R. D. Characterisation of alkane σ-complexes. Chem. Eur. J. 20, 12704–12718 (2014).

    CAS  PubMed  Article  Google Scholar 

  7. Boyd, T. M. et al. A structurally characterized cobalt(I) σ‐alkane complex. Angew. Chem. Int. Ed. 59, 6177–6181 (2020).

    CAS  Article  Google Scholar 

  8. Chadwick, F. M. et al. Selective C–H activation at a molecular rhodium sigma-alkane complex by solid/gas single-crystal to single-crystal H/D exchange. J. Am. Chem. Soc. 138, 13369–13378 (2016).

    CAS  PubMed  Article  Google Scholar 

  9. Walter, M. D., White, P. S., Schauer, C. K. & Brookhart, M. The quest for stable σ-methane complexes: computational and experimental studies. New J. Chem. 35, 2884–2893 (2011).

    CAS  Article  Google Scholar 

  10. Cowan, A. J. et al. Time-resolved infrared (TRIR) study on the formation and reactivity of organometallic methane and ethane complexes in room temperature solution. Proc. Natl Acad. Sci. USA 104, 6933–6938 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. Perutz, R. N. & Turner, J. J. Photochemistry of the group 6 hexacarbonyls in low-temperature matrices. III. Interaction of the pentacarbonyls with noble gases and other matrices. J. Am. Chem. Soc. 97, 4791–4800 (1975).

    CAS  Article  Google Scholar 

  12. Turner, J. J., Burdett, J. K. & Poliakoff, M. Matrix photochemistry of metal carbonyls. Pure Appl. Chem. 49, 271–285 (1977).

    CAS  Article  Google Scholar 

  13. Bernskoetter, W. H., Schauer, C. K., Goldberg, K. I. & Brookhart, M. Characterization of a rhodium(I) σ-methane complex in solution. Science 326, 553–556 (2009).

    CAS  PubMed  Article  Google Scholar 

  14. Gonzalez, M. I. et al. Structural characterization of framework–gas interactions in the metal–organic framework Co2(dobdc) by in situ single-crystal X-ray diffraction. Chem. Sci. 8, 4387–4398 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. Martin, R., Kim, M., Asthagiri, A. & Weaver, J. F. Alkane activation and oxidation on late-transition-metal oxides: challenges and opportunities. ACS Catal. 8, 4682–4703 (2021).

    Article  CAS  Google Scholar 

  16. Khaliullin, R. Z., Cobar, E. A., Lochan, R. C., Bell, A. T. & Head-Gordon, M. Unravelling the origin of intermolecular interactions using absolutely localized molecular orbitals. J. Phys. Chem. A 111, 8753–8765 (2007).

    CAS  PubMed  Article  Google Scholar 

  17. Sun, X.-Z., Grills, D. C., Nikiforov, S. M., Poliakoff, M. & George, M. W. Remarkable stability of (η5-C5H5)Re(CO)2L (L = n-Heptane, Xe, and Kr): a time-resolved infrared spectroscopic study of (η5-C5H5)Re(CO)3 in conventional and supercritical fluid solution. J. Am. Chem. Soc. 119, 7521–7525 (1997).

    CAS  Article  Google Scholar 

  18. Geftakis, S. & Ball, G. E. Direct observation of a transition metal alkane complex, CpRe(CO)2(cyclopentane), using NMR spectroscopy. J. Am. Chem. Soc. 120, 9953–9954 (1998).

    CAS  Article  Google Scholar 

  19. Yau, H. M. et al. Observation of cationic transition metal-alkane complexes with moderate stability in hydrofluorocarbon solution. J. Am. Chem. Soc. 138, 281–288 (2016).

    CAS  PubMed  Article  Google Scholar 

  20. Thiele, C. M. & Bermel, W. Speeding up the measurement of one-bond scalar (1J) and residual dipolar couplings (1D) by using non-uniform sampling (NUS). J. Magn. Reson. 216, 134–143 (2012).

    CAS  PubMed  Article  Google Scholar 

  21. Takayama, Y., Sahu, D. & Iwahara, J. Observing in-phase single-quantum 15N multiplets for NH2/NH3+ groups with two-dimensional heteronuclear correlation spectroscopy. J. Magn. Reson. 194, 313–316 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. Kaiser, R. Use of the nuclear Overhauser effect in the analysis of high-resolution nuclear magnetic resonance spectra. J. Chem. Phys. 39, 2435–2442 (1963).

    CAS  Article  Google Scholar 

  23. Kennewell, P. D. Applications of the nuclear Overhauser effect in organic chemistry. J. Chem. Educ. 47, 278–280 (1970).

    CAS  Article  Google Scholar 

  24. Chan, B. & Ball, G. E. A benchmark ab initio and DFT study of the structure and binding of methane in the σ-alkane complex CpRe(CO)2(CH4). J. Chem. Theory Comput. 9, 2199–2208 (2013).

    CAS  PubMed  Article  Google Scholar 

  25. Crabtree, R. H. Aspects of methane chemistry. Chem. Rev. 95, 987–1007 (1995).

    CAS  Article  Google Scholar 

  26. Hall, C. & Perutz, R. N. Transition metal alkane complexes. Chem. Rev. 96, 3125–3146 (1996).

    CAS  PubMed  Article  Google Scholar 

  27. Bernskoetter, W. H. et al. Investigations of iridium-mediated reversible C–H bond cleavage: characterization of a 16-electron iridium(III) methyl hydride complex. J. Am. Chem. Soc. 131, 8603–8613 (2009).

    CAS  PubMed  Article  Google Scholar 

  28. Cowan, A. J. & George, M. W. Formation and reactivity of organometallic alkane complexes. Coord. Chem. Rev. 252, 2504–2511 (2008).

    CAS  Article  Google Scholar 

  29. Childs, G. I., Grills, D. C., Sun, X. Z. & George, M. W. in Pure and Applied Chemistry Vol. 73, 443–447 (Walter de Gruyter, 2001).

  30. Cobar, E. A., Khaliullin, R. Z., Bergman, R. G. & Head-Gordon, M. Theoretical study of the rhenium–alkane interaction in transition metal–alkane sigma-complexes. Proc. Natl Acad. Sci. USA 104, 6963–6968 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. Lu, Q., Neese, F. & Bistoni, G. London dispersion effects in the coordination and activation of alkanes in σ-complexes: a local energy decomposition study. Phys. Chem. Chem. Phys. 21, 11569–11577 (2019).

    CAS  PubMed  Article  Google Scholar 

  32. Bellachioma, G., Cardaci, G., Macchioni, A. & Zuccaccia, C. Preparation of methyl hydride and dimethyl complexes of osmium and iron: reaction of M(CO)2(PMe3)2CH3I and [M(CO)3(PMe3)2CH3]+[BPh4] (M = Os, Fe) with borohydrides and lithium methyl. J. Organomet. Chem. 628, 255–261 (2001).

    CAS  Article  Google Scholar 

  33. Jones, W. D. & Maguire, J. A. The activation of methane by rhenium. Catalytic H/D exchange in alkanes with CpRe(PPh3)2H2. Organometallics. 5, 590–591 (1986).

    CAS  Article  Google Scholar 

  34. Field, L. D., George, A. V. & Messerle, B. A. Methane activation by an iron phosphine complex in liquid xenon solution. J. Chem. Soc. Chem. Commun. 1991, 1339–1341 (1991).

  35. Kiel, W. A., Ball, R. G. & Graham, W. A. G. Carbonyl-η-hexamethylbenzene complexes of osmium. Carbon-hydrogen activation by (η-C6Me6)Os(CO)(H)2. J. Organomet. Chem. 383, 481–496 (1990).

    CAS  Article  Google Scholar 

  36. Gross, C. L. & Girolami, G. S. Metal-alkane complexes. Rapid exchange of hydrogen atoms between hydride and methyl ligands in [(C5Me5)Os(dmpm)(CH3)H+]. J. Am. Chem. Soc. 120, 6605–6606 (1998).

    CAS  Article  Google Scholar 

  37. Herrmann, W. A., Herdtweck, E. & Schäfer, A. Metallcarbonyl-synthesen, I. X. X. Osmium-komplexe der carbonyl-reihe. Chem. Ber. 121, 1907–1911 (1988).

    CAS  Article  Google Scholar 

  38. Krossing, I., Brands, H., Feuerhake, R. & Koenig, S. New reagents to introduce weakly coordinating anions of type Al(ORF)4: synthesis, structure and characterization of Cs and trityl salts. J. Fluor. Chem. 112, 83–90 (2001).

    CAS  Article  Google Scholar 

  39. Hoyano, J. K., May, C. J. & Graham, W. A. G. Cyclopentadienylosmium and (pentamethylcyclopentadienyl)osmium compounds. Synthesis and reactions of (η5-C5H5)Os(CO)2H, (η5-C5Me5)Os(CO)2H, and some of their derivatives. Inorg. Chem. 21, 3095–3099 (1982).

    CAS  Article  Google Scholar 

  40. Frisch, M. J. et al. Gaussian 16 revision C01 (Gaussian, 2016).

  41. Yu, H. S., He, X., Li, S. L. & Truhlar, D. G. MN15: a Kohn–Sham global-hybrid exchange–correlation density functional with broad accuracy for multi-reference and single-reference systems and noncovalent interactions. Chem. Sci. 7, 5032–5051 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297–3305 (2005).

    CAS  PubMed  Article  Google Scholar 

  43. Guo, Y., Riplinger, C., Becker, U., Liakos, D. G., Minenkov, Y., Cavallo, L. & Neese, F. An improved linear scaling perturbative triples correction for the domain based local pair-natural orbital based singles and doubles coupled cluster method [DLPNO-CCSD(T)]. J. Chem. Phys. 148, 011101 (2018)..

  44. Ribeiro, R. F., Marenich, A. V., Cramer, C. J. & Truhlar, D. G. Use of solution-phase vibrational frequencies in continuum models for the free energy of solvation. J. Phys. Chem. B 115, 14556–14562 (2011).

    CAS  PubMed  Article  Google Scholar 

  45. Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).

    CAS  Article  Google Scholar 

  46. Perdew, J. P. & Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 13244–13249 (1992).

    CAS  Article  Google Scholar 

  47. Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).

    CAS  PubMed  Article  Google Scholar 

  48. Chai, J.-D. & Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 10, 6615–6620 (2008).

    CAS  PubMed  Article  Google Scholar 

  49. Neese, F. Software update: the ORCA program system, version 4.0. Comput. Mol. Sci. WIREs 8, e1327 (2018).

    Article  Google Scholar 

  50. Glendening, E. D., Reed, A. E., Carpenter, J. E. & Weinhold, F. NBO v.3.1 (2016).

  51. Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).

    PubMed  Article  CAS  Google Scholar 

  52. te Velde, G. et al. Chemistry with ADF. J. Comput. Chem. 22, 931–967 (2001).

    Article  Google Scholar 

  53. Adamo, C. & Barone, V. Toward reliable density functional methods without adjustable parameters: the PBE0 model. J. Chem. Phys. 110, 6158–6170 (1999).

    CAS  Article  Google Scholar 

  54. Autschbach, J. Erratum: two-component relativistic hybrid density functional computations of nuclear spin-spin coupling tensors using Slater-type basis sets and density-fitting techniques. J. Chem. Phys. 130, 209901 (2009).

    Article  CAS  Google Scholar 

  55. Autschbach, J. Two-component relativistic hybrid density functional computations of nuclear spin-spin coupling tensors using Slater-type basis sets and density-fitting techniques. J. Chem. Phys. 129, 094105 (2008).

    PubMed  Article  CAS  Google Scholar 

  56. Macrae, C. F. et al. Mercury 4.0: from visualization to analysis, design and prediction. J. Appl. Crystallogr. 53, 226–235 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

This research was supported (partially or fully) by the Australian Government (1) through the Australian Research Council’s Discovery Projects funding scheme (project DP170104301) and (2) with the assistance of resources and services from the National Computational Infrastructure. This research includes computations using the computational cluster Katana supported by Research Technology Services at University of New South Wales Sydney. We acknowledge the technical expertise and assistance of J. Richards in the Science/Engineering workshop at University of New South Wales for modifying and constructing a bespoke NMR tube cap to enable sample preparation and irradiation at low temperature under rigorous inert atmosphere conditions.

Author information

Authors and Affiliations

Authors

Contributions

J.D.W., L.D.F. and G.E.B. designed the study and wrote the manuscript; J.D.W. and G.E.B. performed the experiments; and J.D.W., L.D.F. and G.E.B. processed and analysed the data.

Corresponding author

Correspondence to Graham. E. Ball.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Maria Jose Calhorda and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–16, Tables 1–6, Discussion and references.

Supplementary Data 1

Data for graphs in Supplementary Figs. 12 and 13.

Supplementary Data 2

Text file containing coordinates of all calculated structures in xyz format (viewable with common software such as Mercury).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Watson, J.D., Field, L.D. & Ball, G.E. Binding methane to a metal centre. Nat. Chem. 14, 801–804 (2022). https://doi.org/10.1038/s41557-022-00929-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-022-00929-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing