Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Tunable acetylene sorption by flexible catenated metal–organic frameworks

Abstract

The safe storage of flammable gases, such as acetylene, is essential for current industrial purposes. However, the narrow pressure (P) and temperature range required for the industrial use of pure acetylene (100 < P < 200 kPa at 298 K) and its explosive behaviour at higher pressures make its storage and release challenging. Flexible metal–organic frameworks that exhibit a gated adsorption/desorption behaviour—in which guest uptake and release occur above threshold pressures, usually accompanied by framework deformations—have shown promise as storage adsorbents. Herein, the pressures for gas uptake and release of a series of zinc-based mixed-ligand catenated metal–organic frameworks were controlled by decorating its ligands with two different functional groups and changing their ratio. This affects the deformation energy of the framework, which in turn controls the gated behaviour. The materials offer good performances for acetylene storage with a usable capacity of ~90 v/v (77% of the overall amount) at 298 K and under a practical pressure range (100–150 kPa).

Your institute does not have access to this article

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Schematic representation of the S-shape adsorption isotherms of Zn-CAT-(X)n depending on guest pressure and the ratio of bdc–NO2/bdc/bdc–NH2 linkers in the MOF.
Fig. 2: Presentation of the Zn-CAT-(X)n derivatives as soft porous crystal candidates.
Fig. 3: Tunable acetylene uptake and release sorptions.
Fig. 4: Efficiency of Zn-CAT-(X)n for acetylene storage.

Data availability

X-ray crystallographic data have been deposited at the CCDC (http://www.ccdc.cam.ac.uk/) under CCDC no. 2036574 (as-synthesized Zn-CAT-(NO2)100) and no. 2036575 (activated Zn-CAT-(NO2)100). A copy of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/. All other data supporting the findings of this study are available within the article and its Supplementary Information. Source data are provided with this paper. The source data for Supplementary Figs. 29–32 are available in Supplementary Data 3. Data are also available from the corresponding author upon reasonable request.

References

  1. Matsuda, R. et al. Highly controlled acetylene accommodation in a metal–organic microporous material. Nature 436, 238–241 (2005).

    CAS  PubMed  Article  Google Scholar 

  2. Safetygram 13, Acetylene (Air Products and Chemicals, 2014).

  3. Solvents for Acetylene Filling. Doc. 225/19 (European Industrial Gases Association, AISBL, 2019).

  4. Martin Bulow, S. B., Norman, D., Parkyns, D. & Sajik, W. M. Method and vessel for the storage of gas. WO1997016509, US patent (1999).

  5. Kapelewski, M. T. et al. Record high hydrogen storage capacity in the metal–organic framework Ni2(m-dobdc) at near-ambient temperatures. Chem. Mater. 30, 8179–8189 (2018).

    CAS  Article  Google Scholar 

  6. Li, B. et al. Porous metal-organic frameworks: promising materials for methane storage. Chem 1, 557–580 (2016).

    CAS  Article  Google Scholar 

  7. Moghadam, P. Z. et al. Computer-aided discovery of a metal–organic framework with superior oxygen uptake. Nat. Commun. 9, 1378 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  8. Vaidhyanathan, R. et al. Direct observation and quantification of CO2 binding within an amine-functionalized nanoporous solid. Science 330, 650–653 (2010).

    CAS  PubMed  Article  Google Scholar 

  9. Horike, S., Shimomura, S. & Kitagawa, S. Soft porous crystals. Nat. Chem. 1, 695–704 (2009).

    CAS  PubMed  Article  Google Scholar 

  10. Warren, J. E. et al. Shape selectivity by guest-driven restructuring of a porous material. Angew. Chem. Int. Ed. 53, 4592–4596 (2014).

    CAS  Article  Google Scholar 

  11. Chang, Z., Yang, D.-H., Xu, J., Hu, T.-L. & Bu, X.-H. Flexible metal–organic frameworks: recent advances and potential applications. Adv. Mater. 27, 5432–5441 (2015).

    CAS  PubMed  Article  Google Scholar 

  12. Schneemann, A. et al. Flexible metal–organic frameworks. Chem. Soc. Rev. 43, 6062–6096 (2014).

    CAS  PubMed  Article  Google Scholar 

  13. Zhang, J.-P. & Chen, X.-M. Optimized acetylene/carbon dioxide sorption in a dynamic porous crystal. J. Am. Chem. Soc. 131, 5516–5521 (2009).

    CAS  PubMed  Article  Google Scholar 

  14. Henke, S., Schneemann, A., Wütscher, A. & Fischer, R. A. Directing the breathing behavior of pillared-layered metal–organic frameworks via a systematic library of functionalized linkers bearing flexible substituents. J. Am. Chem. Soc. 134, 9464–9474 (2012).

    CAS  PubMed  Article  Google Scholar 

  15. Jiang, H.-L., Makal, T. A. & Zhou, H.-C. Interpenetration control in metal–organic frameworks for functional applications. Coord. Chem. Rev. 257, 2232–2249 (2013).

    CAS  Article  Google Scholar 

  16. Martí-Gastaldo, C. et al. Side-chain control of porosity closure in single- and multiple-peptide-based porous materials by cooperative folding. Nat. Chem. 6, 343–351 (2014).

    PubMed  Article  CAS  Google Scholar 

  17. Taylor, M. K. et al. Tuning the adsorption-induced phase change in the flexible metal–organic framework Co(bdp). J. Am. Chem. Soc. 138, 15019–15026 (2016).

    CAS  PubMed  Article  Google Scholar 

  18. Horcajada, P. et al. How linker’s modification controls swelling properties of highly flexible iron(III) dicarboxylates MIL-88. J. Am. Chem. Soc. 133, 17839–17847 (2011).

    CAS  PubMed  Article  Google Scholar 

  19. Devic, T. et al. Functionalization in flexible porous solids: effects on the pore opening and the host−guest interactions. J. Am. Chem. Soc. 132, 1127–1136 (2010).

    CAS  PubMed  Article  Google Scholar 

  20. Ramsahye, N. A. et al. Influence of the organic ligand functionalization on the breathing of the porous iron terephthalate metal organic framework type material upon hydrocarbon adsorption. J. Phys. Chem. C 115, 18683–18695 (2011).

    CAS  Article  Google Scholar 

  21. Kundu, T., Shah, B. B., Bolinois, L. & Zhao, D. Functionalization-induced breathing control in metal–organic frameworks for methane storage with high deliverable capacity. Chem. Mater. 31, 2842–2847 (2019).

    CAS  Article  Google Scholar 

  22. Mason, J. A. et al. Methane storage in flexible metal–organic frameworks with intrinsic thermal management. Nature 527, 357–361 (2015).

    CAS  PubMed  Article  Google Scholar 

  23. Zhu, A.-X. et al. Tuning the gate-opening pressure in a switching pcu coordination network, X-pcu-5-Zn, by pillar-ligand substitution. Angew. Chem. Int. Ed. 58, 18212–18217 (2019).

    CAS  Article  Google Scholar 

  24. Horike, S., Inubushi, Y., Hori, T., Fukushima, T. & Kitagawa, S. A solid solution approach to 2D coordination polymers for CH4/CO2 and CH4/C2H6 gas separation: equilibrium and kinetic studies. Chem. Sci. 3, 116–120 (2012).

    CAS  Article  Google Scholar 

  25. Fukushima, T. et al. Solid solutions of soft porous coordination polymers: fine-tuning of gas adsorption properties. Angew. Chem. Int. Ed. 49, 4820–4824 (2010).

    CAS  Article  Google Scholar 

  26. Zhang, J.-P., Zhu, A.-X., Lin, R.-B., Qi, X.-L. & Chen, X.-M. Pore surface tailored SOD-type metal-organic zeolites. Adv. Mater. 23, 1268–1271 (2011).

    CAS  PubMed  Article  Google Scholar 

  27. Henke, S., Schmid, R., Grunwaldt, J.-D. & Fischer, R. A. Flexibility and sorption selectivity in rigid metal–organic frameworks: the impact of ether-functionalised linkers. Chem. Eur. J. 16, 14296–14306 (2010).

    CAS  PubMed  Article  Google Scholar 

  28. He, Y., Krishna, R. & Chen, B. Metal–organic frameworks with potential for energy-efficient adsorptive separation of light hydrocarbons. Energy Environ. Sci. 5, 9107–9120 (2012).

    CAS  Article  Google Scholar 

  29. Duan, X., Cui, Y., Yang, Y. & Qian, G. A novel methoxy-decorated metal–organic framework exhibiting high acetylene and carbon dioxide storage capacities. CrystEngComm 19, 1464–1469 (2017).

    CAS  Article  Google Scholar 

  30. Pang, J. et al. A porous metal-organic framework with ultrahigh acetylene uptake capacity under ambient conditions. Nat. Commun. 6, 7575 (2015).

    PubMed  Article  Google Scholar 

  31. Cai, J. et al. An amino-decorated NbO-type metal–organic framework for high C2H2 storage and selective CO2 capture. RSC Adv. 5, 77417–77422 (2015).

    CAS  Article  Google Scholar 

  32. Wang, S.-Q. et al. High working capacity acetylene storage at ambient temperature enabled by a switching adsorbent layered material. ACS Appl. Mater. Interfaces https://doi.org/10.1021/acsami.1c06241 (2021).

  33. Sun, X. et al. Tuning the gate opening pressure of a flexible doubly interpenetrated metal–organic framework through ligand functionalization. Dalton Trans. 47, 13158–13163 (2018).

    CAS  PubMed  Article  Google Scholar 

  34. Schwedler, I. et al. Mixed-linker solid solutions of functionalized pillared-layer MOFs – adjusting structural flexibility, gas sorption, and thermal responsiveness. Dalton Trans. 45, 4230–4241 (2016).

    CAS  PubMed  Article  Google Scholar 

  35. Foo, M. L., Matsuda, R. & Kitagawa, S. Functional hybrid porous coordination polymers. Chem. Mater. 26, 310–322 (2014).

    CAS  Article  Google Scholar 

  36. Lescouet, T., Kockrick, E., Bergeret, G., Pera-Titus, M. & Farrusseng, D. Engineering MIL-53(Al) flexibility by controlling amino tags. Dalton Trans. 40, 11359–11361 (2011).

    CAS  PubMed  Article  Google Scholar 

  37. Chen, B. et al. A microporous metal–organic framework for gas-chromatographic separation of alkanes. Angew. Chem. Int. Ed. 45, 1390–1393 (2006).

    CAS  Article  Google Scholar 

  38. Gu, Y. et al. Structural-deformation-energy-modulation strategy in a soft porous coordination polymer with an interpenetrated framework. Angew. Chem. Int. Ed. 59, 15517–15521 (2020).

    CAS  Article  Google Scholar 

  39. Xiang, S., Zhou, W., Gallegos, J. M., Liu, Y. & Chen, B. Exceptionally high acetylene uptake in a microporous metal−organic framework with open metal sites. J. Am. Chem. Soc. 131, 12415–12419 (2009).

    CAS  PubMed  Article  Google Scholar 

  40. Fukushima, T. et al. Modular design of domain assembly in porous coordination polymer crystals via reactivity-directed crystallization process. J. Am. Chem. Soc. 134, 13341–13347 (2012).

    CAS  PubMed  Article  Google Scholar 

  41. Lescouet, T. et al. Homogeneity of flexible metal–organic frameworks containing mixed linkers. J. Mater. Chem. 22, 10287–10293 (2012).

    CAS  Article  Google Scholar 

  42. Ghoufi, A., Maurin, G. & Férey, G. Physics Behind the Guest-Assisted Structural Transitions of a Porous Metal−Organic Framework Material. J. Phys. Chem. Lett. 1, 2810–2815 (2010).

    CAS  Article  Google Scholar 

  43. Coudert, F.-X., Jeffroy, M., Fuchs, A. H., Boutin, A. & Mellot-Draznieks, C. Thermodynamics of guest-induced structural transitions in hybrid organic−inorganic frameworks. J. Am. Chem. Soc. 130, 14294–14302 (2008).

    CAS  PubMed  Article  Google Scholar 

  44. Bousquet, D., Coudert, F. X. & Boutin, A. Free energy landscapes for the thermodynamic understanding of adsorption-induced deformations and structural transitions in porous materials. J. Chem. Phys. 137, 044118 (2012).

    CAS  PubMed  Article  Google Scholar 

  45. Kitaura, R., Fujimoto, K., Noro, S.-I., Kondo, M. & Kitagawa, S. A. Pillared-layer coordination polymer network displaying hysteretic sorption: [Cu2(pzdc)2(dpyg)]n (pzdc = pyrazine-2,3-dicarboxylate; dpyg = 1,2-di(4-pyridyl)glycol). Angew. Chem. Int. Ed. 41, 133–135 (2002).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Air Liquide via the 2016 Air Liquide Scientific Challenge, a KAKENHI Grant-in-Aid for Specially Promoted Research (JP25000007), Scientific Research (S) (JP18H05262) and Early-Career Scientists (JP19K15584) from the Japan Society of the Promotion of Science. Synchrotron X-ray diffraction measurements were performed at the Japan Synchrotron Radiation Institute, Super Photon Ring – 8 GeV (proposal nos 2018B1820 and 2019A1136). We acknowledge iCeMS Analysis Centre for access to analytical facilities.

We are grateful to CNRS-Kyoto LIA ‘SMOLAB’. In addition, we thank Air Liquide Japan, P. Ginet and L. Prost, as well as the technical staff for advice and experimental assistance.

Author information

Authors and Affiliations

Authors

Contributions

S.K., C.L. and R.R. formulated the project. M.B. and C.L. synthesized the compounds and collected the gas adsorption data. M.B. and C.L. analysed all adsorption data. M.B. and C.L. collected and analysed the 1H NMR, thermogravimetric analysis and powder X-ray diffraction data. K.-i.O. and K.S. collected and analysed the synchrotron X-ray diffraction data. A.L. and M.B. collected all scanning electron microscopy images and ultraviolet–visible spectroscopy and infrared analysis data. F.-X.C. performed the thermodynamics calculations. J.-J.Z. and S.S. performed the quantum chemical calculations. T.O. and C.L. built and collected the sorption data from the acetylene experimental set-up. M.B., K.-i.O., A.L., J.-J.Z., F.-X.C. and S.K. wrote the paper, and all authors contributed to revising the paper.

Corresponding author

Correspondence to Susumu Kitagawa.

Ethics declarations

Competing interests

R. Réau is senior scientific director of research and development and group senior fellow of Air Liquide, France. C. Lavenn, research project manager, and T. Ogawa are employed at Air Liquide Laboratories Innovation Campus in Tokyo, Japan. S. Kitagawa was partially funded by Air Liquide in the frame of a collaboration research agreement between Air Liquide and Kyoto University. The other authors do not declare any competing interests.

Peer review

Peer review information

Nature Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–49, Tables 1–5 and Discussion.

Supplementary Data 1

Crystallographic data for the activated Zn-CAT-(NO2) (CCDC no. 2036575).

Supplementary Data 2

Crystallographic data for the as-synthesized Zn-CAT-(NO2) (CCDC no. 2036574).

Supplementary Data 3

Source data for Supplementary Figs. 29–32.

Source data

Source Data Fig. 2

Source data for Fig. 2c.

Source Data Fig. 3

Source data for Fig. 3a–d.

Source Data Fig. 4

Source data for Fig. 4a–c.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bonneau, M., Lavenn, C., Zheng, JJ. et al. Tunable acetylene sorption by flexible catenated metal–organic frameworks. Nat. Chem. 14, 816–822 (2022). https://doi.org/10.1038/s41557-022-00928-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-022-00928-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing