Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Stabilization of hexazine rings in potassium polynitride at high pressure

Abstract

Polynitrogen molecules are attractive for high-energy-density materials due to energy stored in nitrogen–nitrogen bonds; however, it remains challenging to find energy-efficient synthetic routes and stabilization mechanisms for these compounds. Direct synthesis from molecular dinitrogen requires overcoming large activation barriers and the reaction products are prone to inherent inhomogeneity. Here we report the synthesis of planar N62− hexazine dianions, stabilized in K2N6, from potassium azide (KN3) on laser heating in a diamond anvil cell at pressures above 45 GPa. The resulting K2N6, which exhibits a metallic lustre, remains metastable down to 20 GPa. Synchrotron X-ray diffraction and Raman spectroscopy were used to identify this material, through good agreement with the theoretically predicted structural, vibrational and electronic properties for K2N6. The N62− rings characterized here are likely to be present in other high-energy-density materials stabilized by pressure. Under 30 GPa, an unusual N20.75−-containing compound with the formula K3(N2)4 was formed instead.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Single-crystal X-ray diffraction data in compressed to 50 GPa and laser heated via direct coupling KN3 without a pressure medium.
Fig. 2: Raman spectra of X-ray-unexposed and -exposed KN3 before and after laser heating at around 50 GPa.
Fig. 3: Volumes per formula unit of K–N compounds investigated here.
Fig. 4: Vibrational frequencies of P6/mmm K2N6.
Fig. 5: Experimental data on I41/amd K3(N2)4 synthesized at 30 GPa by laser heating of KN3.

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available at https://doi.org/10.6084/m9.figshare.19236573 (ref. 95), https://doi.org/10.6084/m9.figshare.19236609 (ref. 96) and https://doi.org/10.6084/m9.figshare.19228086.v1 (ref. 97). CSD 2022907 and 2094084 contain crystallographic data for the K3(N2)4 and K2N6 structures. These data can be obtained free of charge from FIZ Karlsruhe at www.ccdc.cam.ac.uk/structures. Source Data are provided with this paper.

References

  1. Christe, K. O., Wilson, W. W., Sheehy, J. A. & Boatz, J. A. N5+: a novel homoleptic polynitrogen ion as a high energy density material. Angew. Chem. Int. Ed. 38, 2004–2009 (1999).

    Article  CAS  Google Scholar 

  2. Lauderdale, W. J., Stanton, J. F. & Bartlett, R. J. Stability and energetics of metastable molecules: tetraazatetrahedrane (N4), hexaazabenzene (N6), and octaazacubane (N8). J. Phys. Chem. 96, 1173–1178 (1992).

    Article  CAS  Google Scholar 

  3. Glukhovtsev, M. N., Jiao, H. & Schleyer, P. V. R. Besides N2, what is the most stable molecule composed only of nitrogen atoms? Inorganic Chemistry 35, 7124–7133 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Hirshberg, B., Gerber, R. B. & Krylov, A. I. Calculations predict a stable molecular crystal of N8. Nat Chem 6, 52–56 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Zahariev, F., Hooper, J., Alavi, S., Zhang, F. & Woo, T. K. Low-pressure metastable phase of single-bonded polymeric nitrogen from a helical structure motif and first-principles calculations. Phys. Rev. B 75, 140101 (2007).

    Article  CAS  Google Scholar 

  6. Mailhiot, C., Yang, L. H. & McMahan, A. K. Polymeric nitrogen. Phys. Rev. B 46, 14419 (1992).

    Article  CAS  Google Scholar 

  7. Tobita, M. & Bartlett, R. J. Structure and stability of N6 isomers and their spectroscopic characteristics. J. Phys. Chem. A 105, 4107–4113 (2001).

    Article  CAS  Google Scholar 

  8. Samartzis, P. C. & Wodtke, A. M. All-nitrogen chemistry: how far are we from N60? Int. Rev. Phys. Chem. 25, 527 (2006).

    Article  CAS  Google Scholar 

  9. Samartzis, P. C. & Wodtke, A. M. Casting a new light on azide photochemistry: photolytic production of cyclic-N3. Phys. Chem. Chem. Phys. 9, 3054–3066 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Eremets, M. I., Gavriliuk, A. G., Trojan, I. A., Dzivenko, D. A. & Boehler, R. Single-bonded cubic form of nitrogen. Nat. Mater. 3, 558–563 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Wilson, K. J., Perera, S. A., Bartlett, R. J. & Watts, J. D. Stabilization of the pseudo-benzene N6 ring with oxygen. J. Phys. Chem. A 105, 7693–7699 (2001).

    Article  CAS  Google Scholar 

  12. Wang, W. et al. High-pressure bonding mechanism of selenium nitrides. Inorganic Chemistry 58, 2397–2402 (2019).

    Article  CAS  PubMed  Google Scholar 

  13. Zhang, S., Zhao, Z., Liu, L. & Yang, G. Pressure-induced stable BeN4 as a high-energy density material. J. Power Sources 365, 155–1161 (2017).

    Article  CAS  Google Scholar 

  14. Liu, Z. et al. Nitrogen-rich GaN5 and GaN6 as high energy density materials with modest synthesis condition. Phys. Lett. A 383, 125859 (2019).

    Article  CAS  Google Scholar 

  15. Li, J., Sun, L., Wang, X., Zhu, H. & Miao, M. Simple route to metal cyclo-N5 salt: high-pressure synthesis of CuN5. J. Phys. Chem. C 122, 22339–22344 (2018).

    Article  CAS  Google Scholar 

  16. Zhang, Y. et al. Diverse ruthenium nitrides stabilized under pressure: a theoretical prediction. Sci. Rep. 6, 33506 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Straka, M. N6 ring as a planar hexagonal ligand in novel M(η6-N6) species. Chem. Phys. Lett. 358, 531–536 (2002).

    Article  CAS  Google Scholar 

  18. Zhang, J., Oganov, A. R., Li, X. & Niu, H. Pressure-stabilized hafnium nitrides and their properties. Phys. Rev. B 95, 020103 (2017).

    Article  Google Scholar 

  19. Kvashnin, A. G., Oganov, A. R., Samtsevich, A. I. & Allahyari, Z. Computational Search for novel hard chromium-based materials. J. Phys. Chem. Lett. 8, 755–764 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. Yu, S. et al. Emergence of novel polynitrogen molecule-like species, covalent chains, and layers in magnesium–nitrogen MgxNy phases under high pressure. J. Phys. Chem. C 121, 11037–11046 (2017).

    Article  CAS  Google Scholar 

  21. Huang, B. & Frapper, G. Barium–nitrogen phases under pressure: emergence of structural diversity and nitrogen-rich compounds. Chem. Mater. 30, 7623–7636 (2018).

    Article  CAS  Google Scholar 

  22. Zhang, C., Sun, C., Hu, B., Yu, C. & Lu, M. Synthesis and characterization of the pentazolate anion cyclo-N5- in (N5)6(H3O)3(NH4)4Cl. Science 355, 374–376 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. Xu, Y. et al. A series of energetic metal pentazolate hydrates. Nature 549, 78 (2017).

    Article  CAS  PubMed  Google Scholar 

  24. Xu, Y., Lin, Q., Wang, P. & Lu, M. Syntheses, crystal structures and properties of a series of 3D metal–inorganic frameworks containing pentazolate anion. Chem. Asian J. 13, 1669–1673 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Sun, C. et al. Synthesis of AgN5 and its extended 3D energetic framework. Nat. Commun. 9, 1269 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Zhang, W. et al. Stabilization of the pentazolate anion in a zeolitic architecture with Na20N60 and Na24N60 nanocages. Angew. Chem. Int. Ed. 57, 2592–2595 (2018).

    Article  CAS  Google Scholar 

  27. Yao, Y., Lin, Q., Zhou, X. & Lu, M. Recent research on the synthesis pentazolate anion cyclo-N5. FirePhysChem 1, 33–45 (2021).

    Article  Google Scholar 

  28. Christe, K. O. Polynitrogen chemistry enters the ring. Science 355, 351–351 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. Wozniak, D. R. & Piercey, D. G. Review of the current synthesis and properties of energetic pentazolate and derivatives thereof. Engineering 6, 981–991 (2020).

    Article  CAS  Google Scholar 

  30. Ren, G. et al. Theoretical perspective on the reaction mechanism from arylpentazenes to arylpentazoles: new insights into the enhancement of cyclo-N5 production. Chem. Commun. 55, 2628–2631 (2019).

    Article  CAS  Google Scholar 

  31. Bykov, M. et al. Fe-N system at high pressure reveals a compound featuring polymeric nitrogen chains. Nat Commun 9, 2756 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Laniel, D. et al. Synthesis of magnesium-nitrogen salts of polynitrogen anions. Nat. Commun. 10, 7 (2019).

    Article  CAS  Google Scholar 

  33. Bykov, M. et al. High-pressure synthesis of Dirac materials: layered van der Waals bonded BeN4 polymorph. Phys. Rev. Lett. 126, 175501 (2021).

    Article  CAS  PubMed  Google Scholar 

  34. Bykov, M. et al. Stabilization of polynitrogen anions in tantalum–nitrogen compounds at high pressure. Angew. Chem. Int. Ed. 60, 9003–9008 (2021).

    Article  CAS  Google Scholar 

  35. Bykov, M. et al. High-pressure synthesis of a nitrogen-rich inclusion compound ReN8xN2 with conjugated polymeric nitrogen chains. Angew. Chem. Int. Ed. 57, 9048–9053 (2018).

    Article  CAS  Google Scholar 

  36. Bykov, M. et al. High-pressure synthesis of metal–inorganic frameworks Hf4N20N2, WN8N2, and Os5N283N2 with polymeric nitrogen linkers. Angew. Chem. Int. Ed. 59, 10321–10326 (2020).

    Article  CAS  Google Scholar 

  37. Salke, N. P. et al. Tungsten hexanitride with single-bonded armchairlike hexazine structure at high pressure. Phys. Rev. Lett. 126, 065702 (2021).

    Article  CAS  PubMed  Google Scholar 

  38. Wang, X., Li, J., Zhu, H., Chen, L. & Lin, H. Polymerization of nitrogen in cesium azide under modest pressure. J. Chem. Phys. 141, 044717 (2014).

    Article  PubMed  CAS  Google Scholar 

  39. Peng, F., Yao, Y., Liu, H. & Ma, Y. Crystalline LiN5 predicted from first-principles as a possible high-energy material. J. Phys. Chem. Lett. 6, 2363–2366 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Shen, Y. et al. Novel lithium—nitrogen compounds at ambient and high pressures. Sci. Rep. 5, 14204 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Steele, B. A. & Oleynik, I. I. Sodium pentazolate: a nitrogen rich high energy density material. Chem. Phys. Lett. 643, 21–26 (2016).

    Article  CAS  Google Scholar 

  42. Steele, B. A. & Oleynik, I. I. Novel potassium polynitrides at high pressures. J. Phys. Chem. A 121, 8955–8961 (2017).

    Article  CAS  PubMed  Google Scholar 

  43. Xia, K. et al. Pressure-stabilized high-energy-density alkaline-earth-metal pentazolate salts. J. Phys. Chem. C 123, 10205–10211 (2019).

    Article  CAS  Google Scholar 

  44. Zhang, J., Zeng, Z., Lin, H.-Q. & Li, Y.-L. Pressure-induced planar N6 rings in potassium azide. Sci. Rep. 4, 4358 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Steele, B. A. et al. High-pressure synthesis of a pentazolate salt. Chem. Mater. 29, 735–741 (2016).

    Article  CAS  Google Scholar 

  46. Prasad, D. L. V. K., Ashcroft, N. W. & Hoffmann, R. Evolving structural diversity and metallicity in compressed lithium azide. J. Phys. Chem. C 117, 20838–20846 (2013).

    Article  CAS  Google Scholar 

  47. Li, J. et al. Pressure-induced polymerization of nitrogen in potassium azides. EPL https://doi.org/10.1209/0295-5075/104/16005 (2013).

  48. Wang, X. et al. Polymerization of nitrogen in lithium azide. J. Chem. Phys. https://doi.org/10.1063/1.4826636 (2013).

  49. Zhang, M., Yan, H., Wei, Q., Wang, H. & Wu, Z. Novel high-pressure phase with pseudo-benzene “N6” molecule of LiN3. EPL https://doi.org/10.1209/0295-5075/101/26004 (2013).

  50. Zhang, M. et al. Structural and electronic properties of sodium azide at high pressure: a first principles study. Solid State Commun. 161, 13–18 (2013).

    Article  CAS  Google Scholar 

  51. Yu, H. et al. Polymerization of nitrogen in ammonium azide at high pressures. J. Phys. Chem. C 119, 25268–25272 (2015).

    Article  CAS  Google Scholar 

  52. Zhang, M., Yan, H., Wei, Q. & Liu, H. A new high-pressure polymeric nitrogen phase in potassium azide. RSC Adv. 5, 11825–11830 (2015).

    Article  CAS  Google Scholar 

  53. Laniel, D., Weck, G., Gaiffe, G., Garbarino, G. & Loubeyre, P. High-pressure synthesized lithium pentazolate compound metastable under ambient conditions. J. Phys. Chem. Lett. 9, 1600–1604 (2018).

    Article  CAS  PubMed  Google Scholar 

  54. Laniel, D., Weck, G. & Loubeyre, P. Direct reaction of nitrogen and lithium up to 75 GPa: synthesis of the Li3N, LiN, LiN2, and LiN5 compounds. Inorg. Chem. 57, 10685–10693 (2018).

    Article  CAS  PubMed  Google Scholar 

  55. Bykov, M. et al. Stabilization of pentazolate anions in the high-pressure compounds Na2N5 and NaN5 and in the sodium pentazolate framework NaN5·N2. Dalton Trans. 50, 7229–7237 (2021).

    Article  CAS  PubMed  Google Scholar 

  56. Eremets, M. I. et al. Polymerization of nitrogen in sodium azide. J. Chem. Phys. 120, 10618–10623 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Medvedev, S. A. et al. Phase stability of lithium azide at pressures up to 60 GPa. J. Phys. Condens. Matter https://doi.org/10.1088/0953-8984/21/19/195404 (2009).

  58. Zhu, H. et al. Pressure-induced series of phase transitions in sodium azide. J. Appl. Phys. https://doi.org/10.1063/1.4776235 (2013).

  59. Ji, C. et al. Pressure-induced phase transition in potassium azide up to 55 GPa. J. Appl. Phys. 111, 112613 (2012).

    Article  CAS  Google Scholar 

  60. Ji, C. et al. High pressure X-ray diffraction study of potassium azide. J. Phys. Chem. Solids 72, 736–739 (2011).

    Article  CAS  Google Scholar 

  61. Holtgrewe, N., Lobanov, S. S., Mahmood, M. F. & Goncharov, A. F. Photochemistry within compressed sodium azide. J. Phys. Chem. C 120, 28176–28185 (2016).

    Article  CAS  Google Scholar 

  62. Bykov, M. et al. Dinitrogen as a universal electron acceptor in solid-state chemistry: an example of uncommon metallic compounds Na3(N2)4 and NaN2. Inorg. Chem. 59, 14819–14826 (2020).

    Article  CAS  PubMed  Google Scholar 

  63. Hou, D. et al. Phase transition and structure of silver azide at high pressure. J. Appl. Phys. 110, 023524 (2011).

    Article  CAS  Google Scholar 

  64. Tomasino, D., Kim, M., Smith, J. & Yoo, C.-S. Pressure-induced symmetry-lowering transition in dense nitrogen to layered polymeric nitrogen (LP-N) with colossal Raman intensity. Phys. Rev. Lett. 113, 205502 (2014).

    Article  PubMed  CAS  Google Scholar 

  65. Olijnyk, H. High pressure X-ray diffraction studies on solid N2 up to 43.9 GPa. J. Chem. Phys. 93, 8968–8972 (1990).

    Article  CAS  Google Scholar 

  66. Kantor, I. et al. BX90: a new diamond anvil cell design for X-ray diffraction and optical measurements. Rev. Sci. Instrum. 83, 125102 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Boehler, R. New diamond cell for single-crystal X-ray diffraction. Rev. Sci. Instrum. 77, 115103 (2006).

    Article  CAS  Google Scholar 

  68. Prakapenka, V. B. et al. Advanced flat top laser heating system for high pressure research at GSECARS: application to the melting behavior of germanium. High Pressure Res. 28, 225–235 (2008).

    Article  CAS  Google Scholar 

  69. Cheng, P. et al. Polymorphism of polymeric nitrogen at high pressures. J. Chem. Phys. 152, 244502 (2020).

    Article  CAS  PubMed  Google Scholar 

  70. Goncharov, A. F. et al. Backbone NxH compounds at high pressures. J. Chem. Phys. https://doi.org/10.1063/1.4922051 (2015).

  71. Holtgrewe, N., Greenberg, E., Prescher, C., Prakapenka, V. B. & Goncharov, A. F. Advanced integrated optical spectroscopy system for diamond anvil cell studies at GSECARS. High Pressure Res. 39, 457–470 (2019).

    Article  CAS  Google Scholar 

  72. Sheldrick, G. M. SHELXT— integrated space-group and crystal-structure determination. Acta Crystallogr. A 71, 3–8 (2015).

    Article  CAS  Google Scholar 

  73. Sheldrick, G. Crystal structure refinement with SHELXL. Acta Crystallogr. C 71, 3–8 (2015).

    Article  CAS  Google Scholar 

  74. Prescher, C. & Prakapenka, V. B. DIOPTAS: a program for reduction of two-dimensional X-ray diffraction data and data exploration. High Pressure Res. 35, 223–230 (2015).

    Article  CAS  Google Scholar 

  75. Václav, P., Michal, D. & Lukáš, P. Crystallographic computing system JANA2006: general features. Zeit. Kristallogr. 229, 345–352 (2014).

    Google Scholar 

  76. Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  77. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  PubMed  Google Scholar 

  78. Togo, A. & Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 108, 1 (2015).

    Article  CAS  Google Scholar 

  79. Ganose, A. M., Jackson, A. J. & Scanlton, D. O. SUMO: command-line tools for plotting and analysis of periodic ab initio calculations. J. Open Source Softw. 3, 717 (2018).

    Article  Google Scholar 

  80. Therrien, F., Graf, P. & Stevanović, V. Matching crystal structures atom-to-atom. J. Chem. Phys. 152, 074106 (2020).

    Article  CAS  PubMed  Google Scholar 

  81. Stevanović, V. et al. Predicting kinetics of polymorphic transformations from structure mapping and coordination analysis. Phys. Rev. Mater. 2, 033802 (2018).

    Article  Google Scholar 

  82. Hart, G. L. W. & Forcade, R. W. Algorithm for generating derivative structures. Phys. Rev. B 77, 224115 (2008).

    Article  CAS  Google Scholar 

  83. Qian, G.-R. et al. Variable cell nudged elastic band method for studying solid–solid structural phase transitions. Comput. Phys. Commun. 184, 2111–2118 (2013).

    Article  CAS  Google Scholar 

  84. Oganov, A. R. & Glass, C. W. Crystal structure prediction using ab initio evolutionary techniques: principles and applications. J. Chem. Phys. https://doi.org/10.1063/1.2210932 (2006).

  85. Oganov, A. R., Lyakhov, A. O. & Valle, M. How evolutionary crystal structure prediction works—and why. Acc. Chem. Res. 44, 227–237 (2011).

    Article  CAS  PubMed  Google Scholar 

  86. Oganov, A. R., Ma, Y., Lyakhov, A. O., Valle, M. & Gatti, C. Evolutionary crystal structure prediction as a method for the discovery of minerals and materials. Rev. Mineralogy Geochem. 71, 271–298 (2010).

    Article  CAS  Google Scholar 

  87. Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

    Article  CAS  Google Scholar 

  88. Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964).

    Article  Google Scholar 

  89. Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965).

    Article  Google Scholar 

  90. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).

    Article  Google Scholar 

  91. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  92. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article  CAS  Google Scholar 

  93. Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).

    Article  CAS  Google Scholar 

  94. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Article  Google Scholar 

  95. Samtsevich, A. Details of Theoretical Calculations of the Transition Pathways Between the Candidate Structures (FigShare, 2022); https://doi.org/10.6084/m9.figshare.19236573

  96. Chepkasov, I. Details of Theoretical Calculations of the Electronic and Phonon Band Structure of Novel High-Pressure K2N6 (FigShare, 2022); https://doi.org/10.6084/m9.figshare.19236609

  97. Bykov, M. Synchrotron Dataset of laser-heated KN3 at ~50 GPa (FigShare, 2022); https://doi.org/10.6084/m9.figshare.19228086.v1

Download references

Acknowledgements

This work at ISSP was supported by the National Natural Science Foundation of China (grant nos. 11504382, 21473211, 11674330, 51672279, 11874361, 11774354 and 51727806), the CASHIPS Director’s Fund (grant no. YZJJ201705), the Chinese Academy of Science (grant nos. YZ201524 and YZJJ2020QN22) and a Science Challenge Project (no. TZ201601). This research at Carnegie and APS was sponsored by the Army Research Office and was accomplished under the Cooperative Agreement Number W911NF-19-2-0172. A.R.O., I.C. and A.I.S acknowledge funding from Russian Science Foundation (grant no. 19-72-30043). GeoSoilEnviroCARS (The University of Chicago, Sector 13), Advanced Photon Source (APS), Argonne National Laboratory is supported by the National Science Foundation—Earth Sciences (EAR-1634415). Use of the GSECARS Raman System was supported by the NSF MRI Proposal (EAR-1531583). The Advanced Photon Source is a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under contract no. DE-AC02-06CH11357. The theoretical calculations were performed using Arkuda and Oleg supercomputer of Skoltech.

Author information

Authors and Affiliations

Authors

Contributions

Y.W., M.B. and A.F.G. conceived the research and designed the experiments. Y.W., M.B., X.Z., E.G., S.C., V.B.P. and S.-q.J performed the experiment. E.B., Y.W., M.B. and A.F.G. analysed the data. I.C., A.S. and A.R.O. performed and analysed the calculations. A.F.G., Y.W., M.B. and A.S. wrote the manuscript. All authors reviewed and discussed the manuscript during preparation.

Corresponding author

Correspondence to Alexander F. Goncharov.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Karl Christe, Thomas Klapötke and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–11, Tables 1–5 and an ORTEP illustration of the crystal structures.

Supplementary Data 1

Crystallographic structure file for K2N6 (CCDC 2094084).

Supplementary Data 2

Crystallographic structure file for K3(N2)4 (CCDC 2022907).

Supplementary Data 3

Source data for Supplementary Figs. 5 and 6a,b, and uncompressed ascii data.

Supplementary Data 4

Source data for Supplementary Fig. 9 and uncompressed ascii data.

Supplementary Data 5

Source data for Supplementary Fig. 11 and ascii data.

Source data

Source Data Fig. 3

Uncompressed ascii data.

Source Data Fig. 4

Uncompressed ascii data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Bykov, M., Chepkasov, I. et al. Stabilization of hexazine rings in potassium polynitride at high pressure. Nat. Chem. 14, 794–800 (2022). https://doi.org/10.1038/s41557-022-00925-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-022-00925-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing