Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ion-pair reorganization regulates reactivity in photoredox catalysts

Abstract

Cyclometalated and polypyridyl complexes of d6 metals are promising photoredox catalysts, using light to drive reactions with high kinetic or thermodynamic barriers via the generation of reactive radical intermediates. However, while tuning of their redox potentials, absorption energy, excited-state lifetime and quantum yield are well-known criteria for modifying activity, other factors could be important. Here we show that dynamic ion-pair reorganization controls the reactivity of a photoredox catalyst, [Ir[dF(CF3)ppy]2(dtbpy)]X. Time-resolved dielectric-loss experiments show how counter-ion identity influences excited-state charge distribution, evincing large differences in both the ground- and excited-state dipole moment depending on whether X is a small associating anion (PF6) that forms a contact-ion pair versus a large one that either dissociates or forms a solvent-separated pair (BArF4). These differences correlate with the reactivity of the photocatalyst toward both reductive and oxidative electron transfer, amounting to a 4-fold change in selectivity toward oxidation versus reduction. These results suggest that ion pairing could be an underappreciated factor that modulates reactivity in ionic photoredox catalysts.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structures of [Ir[dF(CF3)ppy]2(dtbpy)]X.
Fig. 2: Data and interpretation of the ground-state dipole moment obtained from dielectric-loss spectroscopy.
Fig. 3: fp-TRDL data showing the excited-state kinetics separating the transients into real (blue) and imaginary (red) permittivities with the global kinetic fits (black dashed traces) used to determine the trajectories of species A and B.
Fig. 4: Proposed Ir[tBu]-PF6 state evolution from TRDL data.

Similar content being viewed by others

Data availability

The data and code that support the findings of this study are available to the public at DOI 10.5281/zenodo.5899758. Source data are provided with this paper.

Code availability

The custom code that support the findings of this study is available to the public at DOI 10.5281/zenodo.5873965.

References

  1. Wagenknecht, P. S. & Ford, P. C. Metal centered ligand field excited states: their roles in the design and performance of transition metal based photochemical molecular devices. Coord. Chem. Rev. 255, 591–616 (2011).

    Article  CAS  Google Scholar 

  2. Sakai, H. A., Liu, W., Le, C. & MacMillan, D. W. Cross-electrophile coupling of unactivated alkyl chlorides. J. Am. Chem. Soc. 142, 11691–11697 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chen, T. Q. & MacMillan, D. W. A metallaphotoredox strategy for the cross-electrophile coupling of α-chloro carbonyls with aryl halides. Angew. Chem. Int. Ed. 58, 14584–14588 (2019).

    Article  CAS  Google Scholar 

  4. Nguyen, S. T., Murray, P. R. & Knowles, R. R. Light-driven depolymerization of native lignin enabled by proton-coupled electron transfer. ACS Catal. 10, 800–805 (2020).

    Article  CAS  Google Scholar 

  5. Zhang, J. Conversion of lignin models by photoredox catalysis. ChemSusChem 11, 3071–3080 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. Daub, M. E. et al. Enantioselective [2+2] cycloadditions of cinnamate esters: generalizing Lewis acid catalysis of triplet energy transfer. J. Am. Chem. Soc. 141, 9543–9547 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhou, Y., Xiong, Z., Qiu, J., Kong, L. & Zhu, G. Visible light photocatalytic acyldifluoroalkylation of unactivated alkenes for the direct synthesis of: gem-difluorinated ketones. Org. Chem. Front. 6, 1022–1026 (2019).

    Article  CAS  Google Scholar 

  8. Arias-Rotondo, D. M. & McCusker, J. K. The photophysics of photoredox catalysis: a roadmap for catalyst design. Chem. Soc. Rev. 45, 5803–5820 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. Porras, J. A., Mills, I. N., Transue, W. J. & Bernhard, S. Highly fluorinated Ir(III)-2,2′:6′,2″-terpyridine–phenylpyridine–X complexes via selective C–F activation: robust photocatalysts for solar fuel generation and photoredox catalysis. J. Am. Chem. Soc. 138, 9460–9472 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. You, N., Kim, K. S., Ahn, T. K., Kim, D. & Park, S. Y. Direct spectroscopic observation of interligand energy transfer in cyclometalated heteroleptic iridium(III) complexes: a strategy for phosphorescence color tuning and white light generation. J. Phys. Chem. C 111, 4052–4060 (2007).

    Article  CAS  Google Scholar 

  11. Lowry, M. S. et al. Single-layer electroluminescent devices and photoinduced hydrogen production from an ionic iridium(III) complex. Chem. Mater. 17, 5712–5719 (2005).

    Article  CAS  Google Scholar 

  12. De Angelis, F. et al. Controlling phosphorescence color and quantum yields in cationic iridium complexes: a combined experimental and theoretical study. Inorg. Chem. 46, 5989–6001 (2007).

    Article  PubMed  CAS  Google Scholar 

  13. Radwan, Y. K., Maity, A. & Teets, T. S. Manipulating the excited states of cyclometalated iridium complexes with β-ketoiminate and β-diketiminate ligands. Inorg. Chem. 54, 7122–7131 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Spaenig, F. et al. Excited-state properties of heteroleptic iridium(III) complexes bearing aromatic hydrocarbons with extended cores. Inorg. Chem. 50, 10859–10871 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Lowry, M. S. & Bernhard, S. Synthetically tailored excited states: phosphorescent, cyclometalated iridium(III) complexes and their applications. Chemistry 12, 7970–7977 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Slinker, J. D. et al. Efficient yellow electroluminescence from a single layer of a cyclometalated iridium complex. J. Am. Chem. Soc. 126, 2763–2767 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Lowry, M. S., Hudson, W. R., Pascal, R. A. & Bernhard, S. Accelerated luminophore discovery through combinatorial synthesis. J. Am. Chem. Soc. 126, 14129–14135 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Diluzio, S. et al. High-throughput screening and automated data-driven analysis of the triplet photophysical properties of structurally diverse, heteroleptic iridium(III) complexes. J. Am. Chem. Soc. 143, 1179–1194 (2021).

    Article  CAS  PubMed  Google Scholar 

  19. Tschierlei, S. et al. Ultrafast excited state dynamics of iridium(III) complexes and their changes upon immobilisation onto titanium dioxide layers. Phys. Chem. Chem. Phys. 18, 10682–10687 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. Li, J. et al. Synthetic control of excited-state properties in cyclometalated Ir(III) complexes using ancillary ligands. Inorg. Chem. 44, 1713–1727 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Balzani, V., Sabbatini, N. & Scandola, F. ‘Second-sphere’ photochemistry and photophysics of coordination compounds. Chem. Rev. 86, 319–337 (1986).

    Article  CAS  Google Scholar 

  22. Marcus, Y. & Hefter, G. Ion pairing. Chem. Rev. 106, 4585–4621 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Macchioni, A. Ion pairing in transition-metal organometallic chemistry. Chem. Rev. 105, 2039–2073 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Tsuboi, T. Optical and thermal electron transfer in KCl:Tl+ crystals. Z. Naturforsch. A 33, 1154–1157 (1978).

    Article  CAS  Google Scholar 

  25. Farney, E. P. et al. Discovery and elucidation of counteranion dependence in photoredox catalysis. J. Am. Chem. Soc. 141, 6385–6391 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Strauss, S. H. The search for larger and more weakly coordinating anions. Chem. Rev. 93, 927–942 (1993).

    Article  CAS  Google Scholar 

  27. Appelhans, L. N. et al. An anion-dependent switch in selectivity results from a change of C–H activation mechanism in the reaction of an imidazolium salt with IrH5(PPh3)2. J. Am. Chem. Soc. 127, 16299–16311 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Song, L. & Trogler, W. C. Mechanism of halide-induced disproportionation of M(CO)3(PCy3)2+ 17-electron radicals (M = Fe, Ru, Os). Periodic trends on reactivity and the role of ion pairs. (Lin. Tech. Rep., 1992); https://pubs.acs.org/sharingguidelines

  29. Troian-Gautier, L., Beauvilliers, E. E., Swords, W. B. & Meyer, G. J. Redox active ion-paired excited states undergo dynamic electron transfer. J. Am. Chem. Soc 138, 16815–16826 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Uraguchi, D., Kimura, Y., Ueoka, F. & Ooi, T. Urea as a redox-active directing group under asymmetric photocatalysis of iridium–chiral borate ion pairs. J. Am. Chem. Soc. 142, 19462–19467 (2020).

    Article  CAS  PubMed  Google Scholar 

  31. Tellers, D. M., Yung, C. M., Arndtsen, B. A., Adamson, D. R. & Bergman, R. G. Electronic and medium effects on the rate of arene C–H bond activation by cationic Ir(III) complexes. J. Am. Chem. Soc. 124, 1400–1410 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Morton, C. M. et al. C–H alkylation via multisite-proton-coupled electron transfer of an aliphatic C–H bond. J. Am. Chem. Soc. 141, 13253–13260 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ruccolo, S., Qin, Y., Schnedermann, C. & Nocera, D. G. General strategy for improving the quantum efficiency of photoredox hydroamidation catalysis. J. Am. Chem. Soc. 140, 14926–14937 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. Marton, A. et al. Static and dynamic quenching of Ru(II) polypyridyl excited states by iodide. Inorg. Chem. 45, 362–369 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Vining, W. J., Caspar, J. V. & Meyer, T. J. The influence of environmental effects on excited-state lifetimes. The effect of ion pairing on metal-to-ligand charge transfer excited states. J. Phys. Chem. 89, 1095–1099 (1985).

    Article  CAS  Google Scholar 

  36. Ward, W. M., Farnum, B. H., Siegler, M. & Meyer, G. J. Chloride ion-pairing with Ru(II) polypyridyl compounds in dichloromethane. J. Phys. Chem. A 117, 8883–8894 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Warman, J. M., Jonker, S. A., de Haas, M. P., Verhoeven, J. W. & Paddon-Row, M. N. Photon-induced charge separation in molecular systems studied by time-resolved microwave conductivity: molecular optoelectric switches. Photopolym. Dev. Phys. Chem. Appl. II 1559, 159–170 (1991).

    CAS  Google Scholar 

  38. Fessenden, R. W. & Hitachi, A. A study of the dielectric relaxation behavior of photoinduced transient species. J. Phys. Chem. 91, 3456–3462 (1987).

    Article  CAS  Google Scholar 

  39. Hoogesteger, F. J. et al. Photoinduced intramolecular charge separation in donor/acceptor-substituted bicyclohexylidene and bicyclohexyl. Chemistry 6, 2948–2959 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Onimisi. M.Y, I. J. Comparative analysis of dielectric constant and loss factor of pure butan-1-ol and ethanol. Am. J. Condens. Matter Phys. 5, 69–75 (2015).

    Google Scholar 

  41. You, Y. & Nam, W. Photofunctional triplet excited states of cyclometalated Ir(iii) complexes: beyond electroluminescence. Chem. Soc. Rev. 41, 7061–7084 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Hay, P. J. Theoretical studies of the ground and excited electronic states in cyclometalated phenylpyridine Ir(III) complexes using density functional theory. J. Phys. Chem. A 106, 1634–1641 (2002).

    Article  CAS  Google Scholar 

  43. Wilde, A. P., King, K. A. & Watts, R. J. Resolution and analysis of the components in dual emission of mixed-chelate/ortho-metalate complexes of iridium(III). J. Phys. Chem. 95, 629–634 (1991).

    Article  CAS  Google Scholar 

  44. Wilde, A. P. & Watts, R. J. Solvent effects on metal-to-ligand charge-transfer bands in ortho-metalated complexes of iridium(III): estimates of transition dipole moments. J. Phys. Chem. 95, 622–629 (1991).

    Article  CAS  Google Scholar 

  45. Wu, S. H. et al. Dynamics of the excited states of [Ir(ppy)2bpy]+ with triple phosphorescence. J. Phys. Chem. A 114, 10339–10344 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. King, K. A. & Watts, R. J. Dual emission from an ortho-metalated Ir(III) complex. J. Am. Chem. Soc. 109, 1589–1590 (1987).

    Article  CAS  Google Scholar 

  47. Barbara, P. F., Meyer, T. J. & Ratner, M. A. Contemporary issues in electron transfer research. J. Phys. Chem. 100, 13148–13168 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was authored in part by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the US Department of Energy (DOE) under contract number DE-AC36-08GO28308. Funding was provided by the US Department of Energy, Office of Science, as part of BioLEC EFRC under grant DE-SC0019370. The views expressed in the article do not necessarily represent the views of the DOE or the US Government. The US Government retains and the publisher, by accepting the article for publication, acknowledges that the US Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for US Government purposes. This article is submitted in fond memory of the late John Warman (TU Delft, Netherlands, 1939–2020), whose seminal research laid the foundation for transient microwave spectroscopy, and the dielectric loss spectroscopy that is described here.

Author information

Authors and Affiliations

Authors

Contributions

G.R., O.G.R., J.D.E., A.Z., R.R.K., J.K.M. and N.Y.S. conceived the experiments. O.G.R., J.D.E., A.Z., N.Y.S. and Z.J.M conducted the experiments. G.R., O.G.R., J.D.E., A.Z., M.S.L., N.Y.S. and H.H.R. analysed the results. H.H.R. performed synthesis. All authors reviewed and contributed to development of the manuscript.

Corresponding authors

Correspondence to O. G. Reid or G. Rumbles.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Ferdinand Grozema, Thomas Teets and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–19, Tables 1–25 and notes.

Supplementary Data 1

Source Data for Supplementary Information

Source data

Source Data Fig. 2

Microwave resonance curves

Source Data Fig. 3

Transient permittivity for Ir[tBu]-PF6 and Ir[tBu]-BArF

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Earley, J.D., Zieleniewska, A., Ripberger, H.H. et al. Ion-pair reorganization regulates reactivity in photoredox catalysts. Nat. Chem. 14, 746–753 (2022). https://doi.org/10.1038/s41557-022-00911-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-022-00911-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing