Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cold photo-carving of halogen-bonded co-crystals of a dye and a volatile co-former using visible light

Abstract

The formation of co-crystals by the assembly of molecules with complementary molecular recognition functionalities is a popular strategy to design or improve a range of solid-state properties, including those relevant for pharmaceuticals, photo- or thermoresponsive materials and organic electronics. Here, we report halogen-bonded co-crystals of a fluorinated azobenzene derivative with a volatile component—either dioxane or pyrazine—that can be cut, carved or engraved with low-power visible light. This cold photo-carving process is enabled by the co-crystallization of a light-absorbing azo dye with a volatile component, which gives rise to materials that can be selectively disassembled with micrometre precision using low-power, non-burning laser irradiation or a commercial confocal microscope. The ability to shape co-crystals in three dimensions using laser powers of 0.5–20 mW—substantially lower than those used for metals, ceramics or polymers—is rationalized by photo-carving that targets the disruption of weak supramolecular interactions, rather than the covalent bonds or ionic structures targeted by conventional laser beam or focused ion beam machining processes.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Illustration of the CPC of a halogen-bonded co-crystal.
Fig. 2: Wavelength dependence of the machining of (trans-azo)(dioxane) co-crystals with visible light.
Fig. 3: Detailed patterns inscribed onto the surface of (trans-azo)(dioxane) co-crystals using either a laboratory laser set-up or a confocal microscope system.
Fig. 4: Comparison of the outcomes of the CPC process on the co-crystals (trans-azo)(dioxane) and irradiation of a crystal of trans-azo, based on SEM.
Fig. 5: Illustration of the CPC of (trans-azo)(pyrazine) co-crystals.

Data availability

Crystallographic data for the structures reported in this article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 2068925 (for the (trans-azo)(dioxane) co-crystal), 2068926 (for the (trans-azo)(pyrazine) co-crystal) and 2068927 (for the trans-azo polymorph II). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/. Source data are provided with this paper. All other data supporting the findings of this study are available within the paper and its Supplementary Information files.

References

  1. Mir, N. A., Dubey, R. & Desiraju, G. R. Strategy and methodology in the synthesis of multicomponent molecular solids: the quest for higher cocrystals. Acc. Chem. Res. 52, 2210–2220 (2019).

    CAS  PubMed  Article  Google Scholar 

  2. Aitipamula, S. et al. Polymorphs, salts, and cocrystals: what’s in a name? Cryst. Growth Des. 12, 2147–2152 (2012).

    CAS  Article  Google Scholar 

  3. Desiraju, G. R. Crystal engineering: from molecule to crystal. J. Am. Chem. Soc. 135, 9952–9967 (2013).

    CAS  PubMed  Article  Google Scholar 

  4. Kavanagh, O. N., Croker, D. M., Walker, G. M. & Zaworotko, M. J. Pharmaceutical cocrystals: from serendipity to design to application. Drug Discov. Today 24, 796–804 (2019).

    CAS  PubMed  Article  Google Scholar 

  5. MacGillivray, L. R. et al. Supramolecular control of reactivity in the solid state: from templates to ladderanes to metal–organic frameworks. Acc. Chem. Res. 41, 280–291 (2008).

    CAS  PubMed  Article  Google Scholar 

  6. Bushuyev, O. S., Corkery, T. C., Barrett, C. J. & Friščić, T. Photo-mechanical azobenzene cocrystals and in situ X-ray diffraction monitoring of their optically-induced crystal-to-crystal isomerisation. Chem. Sci. 5, 3158–3164 (2014).

    CAS  Article  Google Scholar 

  7. Zaworotko, M. J. Molecules to crystals, crystals to molecules … and back again? Cryst. Growth Des. 7, 4–9 (2007).

    CAS  Article  Google Scholar 

  8. Lu, B., Fang, X. & Yan, D. Luminescent polymorphic co-crystals: a promising way to the diversity of molecular assembly, fluorescence polarization, and optical waveguide. ACS Appl. Mater. Interfaces 12, 31940–31951 (2020).

    CAS  PubMed  Article  Google Scholar 

  9. Christopherson, J.-C., Topić, F., Barrett, C. J. & Friščić, T. Halogen-bonded cocrystals as optical materials: next-generation control over light–matter interactions. Cryst. Growth Des. 18, 1245–1259 (2018).

    CAS  Article  Google Scholar 

  10. Liu, C.-H., Niazi, M. R. & Perepichka, D. F. Strong enhancement of π‐electron donor/acceptor ability by complementary DD/AA hydrogen bonding. Angew. Chem. Int. Ed. 58, 17312–17321 (2019).

    CAS  Article  Google Scholar 

  11. Aakeroy, C. B., Wijethunga, T. K., Benton, J. & Desper, J. Stabilizing volatile liquid chemicals using co-crystallization. Chem. Commun. 51, 2425–2428 (2015).

    CAS  Article  Google Scholar 

  12. Cavallo, G. et al. The halogen bond. Chem. Rev. 116, 2478–2601 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. Mukherjee, A., Tothadi, S. & Desiraju, G. R. Halogen bonds in crystal engineering: like hydrogen bonds yet different. Acc. Chem. Res. 47, 2514–2524 (2014).

    CAS  PubMed  Article  Google Scholar 

  14. Raatikainen, K. & Rissanen, K. Breathing molecular crystals: halogen- and hydrogen-bonded porous molecular crystals with solvent induced adaptation of the nanosized channels. Chem. Sci. 3, 1235–1239 (2012).

    CAS  Article  Google Scholar 

  15. Metrangolo, P. et al. Nonporous organic solids capable of dynamically resolving mixtures of diiodoperfluoroalkanes. Science 323, 1461–1464 (2009).

    CAS  PubMed  Article  Google Scholar 

  16. Catalano, L. et al. Dynamic characterization of crystalline supramolecular rotors assembled through halogen bonding. J. Am. Chem. Soc. 137, 15386–15389 (2015).

    CAS  PubMed  Article  Google Scholar 

  17. Szell, P. M. J., Zablotny, S. & Bryce, D. L. Halogen bonding as a supramolecular dynamics catalyst. Nat. Commun. 10, 916 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  18. Cavallo, G. et al. Superfluorinated ionic liquid crystals based on supramolecular, halogen-bonded anions. Angew. Chem. Int. Ed. 55, 6300–6304 (2016).

    CAS  Article  Google Scholar 

  19. Sinnwell, M. A. & MacGillivray, L. R. Halogen-bond-templated [2+2] photodimerization in the solid state: directed synthesis and rare self-inclusion of a halogenated product. Angew. Chem. Int. Ed. 55, 3477–3480 (2016).

    CAS  Article  Google Scholar 

  20. Priimagi, A., Cavallo, G., Metrangolo, P. & Resnati, G. The halogen bond in the design of functional supramolecular materials: recent advances. Acc. Chem. Res. 46, 2686–2695 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. Saccone, M. & Catalano, L. Halogen bonding beyond crystals in materials science. J. Phys. Chem. B 123, 9281–9290 (2019).

    CAS  PubMed  Article  Google Scholar 

  22. Naumov, P., Chizhik, S., Panda, M. K., Nath, N. K. & Boldyreva, E. Mechanically responsive molecular crystals. Chem. Rev. 115, 12440–12490 (2015).

    CAS  PubMed  Article  Google Scholar 

  23. Bushuyev, O. S., Tomberg, A., Friščić, T. & Barrett, C. J. Shaping crystals with light: crystal-to-crystal isomerization and photomechanical effect in fluorinated azobenzenes. J. Am. Chem. Soc. 135, 12556–12559 (2013).

    CAS  PubMed  Article  Google Scholar 

  24. Natarajan, A. et al. The photoarrangement of α-santonin is a single-crystal-to-single-crystal reaction: a long kept secret in solid-state organic chemistry revealed. J. Am. Chem. Soc. 129, 9846–9847 (2007).

    CAS  PubMed  Article  Google Scholar 

  25. Chu, Q., Swenson, D. C. & MacGillivray, L. R. A single-crystal-to-single-crystal transformation mediated by argentophilic forces converts a finite metal complex into an infinite coordination network. Angew. Chem. Int. Ed. 44, 3569–3572 (2005).

    CAS  Article  Google Scholar 

  26. Toh, N. L., Nagarathinam, M. & Vittal, J. J. Topochemical photodimerization in the coordination polymer [{(CF3CO2)(μ-O2CCH3)Zn}2(μ-bpe)2]n through single-crystal to single-crystal transformation. Angew. Chem. Int. Ed. 117, 2277–2281 (2005).

    Article  Google Scholar 

  27. Biradha, K. & Santra, R. Crystal engineering of topochemical solid state reactions. Chem. Soc. Rev. 42, 950–967 (2013).

    CAS  PubMed  Article  Google Scholar 

  28. Sun, A., Lauher, J. W. & Goroff, N. S. Preparation of poly(diiododiacetylene), an ordered conjugated polymer of carbon and iodine. Science 312, 1030–1034 (2006).

    CAS  PubMed  Article  Google Scholar 

  29. Kitagawa, D. et al. Control of photomechanical crystal twisting by illumination direction. J. Am. Chem. Soc. 140, 4208–4212 (2018).

    CAS  PubMed  Article  Google Scholar 

  30. Tong, F., Al-Haidar, M., Zhu, L., Al-Kaysi, R. O. & Bardeen, C. J. Photoinduced peeling of molecular crystals. Chem. Commun. 55, 3709–3712 (2019).

    CAS  Article  Google Scholar 

  31. Halabi, J. M., Ahmed, E., Sofela, S. & Naumov, P. Performance of molecular crystals in conversion of light to mechanical work. Proc. Natl Acad. Sci. USA 118, e2020604118 (2021).

    CAS  Article  Google Scholar 

  32. Irie, M., Fukaminato, T., Matsuda, K. & Kobatake, S. Photochromism of diarylethene molecules and crystals: memories, switches, and actuators. Chem. Rev. 114, 12174–12277 (2014).

    CAS  PubMed  Article  Google Scholar 

  33. Halabi, J. M. et al. Spatial photocontrol of the optical output from an organic crystal waveguide. J. Am. Chem. Soc. 141, 14966–14970 (2019).

    CAS  PubMed  Article  Google Scholar 

  34. Karothu, D. P. et al. Mechanically robust amino acid crystals as fiber-optic transducers and wide bandpass filters for optical communication in the near-infrared. Nat. Commun. 12, 1326 (2021).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. Duggirala, N. K., Perry, M. L., Almarsson, O. & Zaworotko, M. J. Pharmaceutical cocrystal: along the path to improved medicines. Chem. Commun. 52, 640–655 (2016).

    CAS  Article  Google Scholar 

  36. Grobelny, A. L., Verdu, F. A. & Groeneman, R. H. Solvent-free synthesis and purification of a photoproduct via sublimation of a tetrahalogenated template. CrystEngComm 19, 3562–3565 (2017).

    CAS  Article  Google Scholar 

  37. Yao, Y., Zhang, L., Leydecker, T. & Samorì, P. Direct photolithography on molecular crystals for high performance organic optoelectronic devices. J. Am. Chem. Soc. 140, 6984–6990 (2018).

    CAS  PubMed  Article  Google Scholar 

  38. Sun, J. & Litchinitser, N. M. Toward practical, subwavelength, visible-light photolithography with hyperlens. ACS Nano 12, 542–548 (2018).

    CAS  PubMed  Article  Google Scholar 

  39. Desbiolles, B. X. E., Bertsch, A. & Renaud, P. Ion beam etching redeposition for 3D multimaterial nanostructure manufacturing. Microsyst. Nanoeng. 5, 11 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. Wang, Z. et al. Patterning organic/inorganic hybrid Bragg stacks by integrating one-dimensional photonic crystals and macrocavities through photolithography: toward tunable colorful patterns as highly selective sensors. ACS Appl. Mater. Interfaces 4, 1397–1403 (2012).

    CAS  PubMed  Article  Google Scholar 

  41. Ghorai, S. et al. From co-crystals to functional thin films: photolithography using [2+2] photodimerization. Chem. Sci. 4, 4304–4308 (2013).

    CAS  Article  Google Scholar 

  42. Li, W. et al. Shaping organic microcrystals using focused ion beam milling. Cryst. Growth Des. 20, 1583–1589 (2020).

    CAS  Article  Google Scholar 

  43. Wood, M. J. et al. Femtosecond laser micromachining of co-polymeric urethane materials. Appl. Surf. Sci. 483, 633–641 (2019).

    CAS  Article  Google Scholar 

  44. Kandidov, V. P., Dormidonov, A. E., Kosareva, O. G., Chin, S. L. & Liu, W. in Self-Focusing: Past and Present: Fundamentals and Prospects (eds Boyd, R. W, Lukisova, S. G. & Shen, Y. R.) 371–298 (Springer, 2009).

  45. Guan, L., Peng, K., Yang, Y., Qiu, X. & Wang, C. The nanofabrication of polydimethylsiloxane using a focused ion beam. Nanotechnology 20, 145301 (2009).

    PubMed  Article  CAS  Google Scholar 

  46. Alias, M. S. et al. Enhanced etching, surface damage recovery, and submicron patterning of hybrid perovskites using a chemically gas-assisted focused-ion beam for subwavelength grating photonic applications. J. Phys. Chem. Lett. 7, 137–142 (2016).

    CAS  PubMed  Article  Google Scholar 

  47. Bei, H., Shim, S., Miller, M. K., Pharr, G. M. & George, E. P. Effects of focused ion beam milling on the nanomechanical behavior of a molybdenum-alloy single crystal. Appl. Phys. Lett. 91, 111915 (2007).

    Article  CAS  Google Scholar 

  48. Vesseur, E. J. R. et al. Surface plasmon polariton modes in a single-crystal Au nanoresonator fabricated using focused-ion-beam milling. Appl. Phys. Lett. 92, 083110 (2008).

    Article  CAS  Google Scholar 

  49. Yager, K. G. & Barrett, C. J. Temperature modeling of laser-irradiated azo-polymer thin films. J. Chem. Phys. 120, 1089–1096 (2004).

    CAS  PubMed  Article  Google Scholar 

  50. Vainauskas, J., Topić, F., Bushuyev, O. S., Barrett, C. J. & Friščić, T. Halogen bonding to the azulene π-system: cocrystal design of pleochroism. Chem. Commun. 56, 15145–15148 (2020).

    CAS  Article  Google Scholar 

  51. Lommerse, J. P. M., Stone, A. J., Taylor, R. & Allen, F. H. The nature and geometry of intermolecular interactions between halogens and oxygen or nitrogen. J. Am. Chem. Soc. 118, 3108–3116 (1996).

    CAS  Article  Google Scholar 

  52. Mantina, M., Chamberlin, A. C., Valero, R., Cramer, C. J. & Truhlar, D. G. Consistent van der Waals radii for the whole main group. J. Phys. Chem. A 113, 5806–5812 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. Bushuyev, O. S., Singleton, T. A. & Barrett, C. J. Fast, reversible, and general photomechanical motion in single crystals of various azo compounds using visible light. Adv. Mater. 25, 1796–1800 (2013).

    CAS  PubMed  Article  Google Scholar 

  54. Salzillo, T. & Brillante, A. Commenting on the photoreactions of anthracene derivatives in the solid state. CrystEngComm 21, 3127–3136 (2019).

    CAS  Article  Google Scholar 

  55. Kim, K. et al. Light-directed soft mass migration for micro/nanophotonics. Adv. Opt. Mater. 7, 1900074 (2019).

    Article  CAS  Google Scholar 

  56. Kitamura, I., Oishi, K., Hara, M., Nagano, S. & Seki, T. Photoinitiated Marangoni flow morphing in a liquid crystalline polymer film directed by super-inkjet printing patterns. Sci. Rep. 9, 2556 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  57. Cheng, Y.-C., Lu, H.-C., Lee, X., Zeng, H. & Priimagi, A. Kirigami-based light-induced shape-morphing and locomotion. Adv. Mater. 32, 1906233 (2020).

    CAS  Article  Google Scholar 

  58. Braga, D., Grepioni, F. & Lampronti, G. I. Supramolecular metathesis: co-former exchange in co-crystals of pyrazine with (R,R)-, (S,S)-, (R,S)- and (S,S/R,R)-tartaric acid. CrystEngComm 13, 3122–3124 (2011).

    CAS  Article  Google Scholar 

  59. Antoine, J. A. & Lin, Q. Synthesis of azobenzenes using N-chlorosuccinimide and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU). J. Org. Chem. 82, 9873–9876 (2017).

    Article  CAS  Google Scholar 

  60. APEX3 (Bruker AXS Inc., 2012).

  61. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. J. Appl. Cryst. 48, 3–10 (2015).

    CAS  Article  Google Scholar 

  62. Sheldrick, G. M. SHELXT—integrated space-group and crystal-structure determination. Acta Cryst. A71, 3–8 (2015).

    Google Scholar 

  63. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Cryst. C71, 3–8 (2015).

    Google Scholar 

  64. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Cryst. 42, 339–341 (2009).

    CAS  Article  Google Scholar 

  65. Farrugia, L. J. WinGX and ORTEP for Windows: an update. J. Appl. Cryst. 45, 849–854 (2012).

    CAS  Article  Google Scholar 

  66. Frisch, M. J. et al. Gaussian 16, Revision C.01 (Gaussian, Inc., 2016).

  67. Becke, A. D. Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).

    CAS  Article  Google Scholar 

  68. Lee, C., Yang, W. & Parr, R. G. Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1998).

    Article  Google Scholar 

  69. Ditchfield, R., Hehre, W. J. & Pople, J. A. Self‐consistent molecular‐orbital methods. IX. An extended Gaussian‐type basis for molecular‐orbital studies of organic molecules. J. Chem. Phys. 54, 724–728 (1971).

    CAS  Article  Google Scholar 

  70. Glukhovtsev, M. N., Pross, A., McGrath, M. P. & Radom, L. Extension of Gaussian-2 (G2) theory to bromine- and iodine-containing molecules: use of effective core potentials. J. Chem. Phys. 103, 1878–1885 (1995).

    CAS  Article  Google Scholar 

  71. Pritchard, B. P., Altarawy, D., Didier, B., Gibson, T. D. & Windus, T. L. New basis set exchange: an open, up-to-date resource for the molecular sciences community. J. Chem. Inf. Model. 59, 4814–4820 (2019).

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

We thank the Natural Sciences and Engineering Research Council (NSERC) Canada for their financial support of this work through Discovery Grants RGPIN-2019-05661 (C.J.B.), RGPIN-2017-06467 (T.F.) and Discovery Accelerator award RGPAS 507837-17 (T.F.), as well as the Government of Canada for a Tier-1 Canada Research Chair (T.F.), and Vanier Graduate (O.S.B.) and Banting Postdoctoral (F.T.) Fellowships. The funders had no role in the study design, data collection and analysis, decision to publish or preparation of the manuscript. We thank M. J. Harrington of McGill Chemistry for use of the confocal Raman microscope, R. D. Rogers of the University of Alabama for the use of a high-speed camera and S. Borchers for the image of the laser source used in Fig. 1d. We acknowledge the use of the Cedar supercomputer, enabled by WestGrid and Compute Canada.

Author information

Authors and Affiliations

Authors

Contributions

Experimental work was conducted by T.H.B., O.S.B., J.-C.C., F.T., J.V. and H.M.T. The experiment planning and analysis was completed jointly by T.H.B., O.S.B., J.-C.C., F.T., H.M.T., T.F. and C.J.B. The research was coordinated by T.F. and C.J.B. All the authors participated in preparing and/or editing the manuscript.

Corresponding authors

Correspondence to T. Friščić or C. J. Barrett.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Christopher Bardeen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Information

Supplementary Figs. 1–48, Tables 1–3, discussion on polymorphism of trans-azo.

Supplementary Video 1

Photo-carving of (trans-azo)(pyrazine), performed using a 532 nm 15 mW laser.

Supplementary Video 2

Photo-carving of (trans-azo)(dioxane), performed using a 532 nm 10 mW laser.

Supplementary Video 3

Detailed photo-carving of (trans-azo)(dioxane) cocrystal independent of crystal face, performed using a 532 nm 10 mW laser.

Supplementary Video 4

Precision photo-carving of (trans-azo)(dioxane). A series of ~200 μm steps are carved through the crystal using a 532 nm 10 mW laser.

Supplementary Video 5

Slow motion video of (trans-azo)(dioxane) irradiated with a 140 ms pulse of a 10 mW 532 nm laser.

Supplementary Video 6

Slow motion photo-carving of (trans-azo)(dioxane) crystal, performed using a 532 nm 10 mW laser.

Supplementary Data 1

Cif file for (trans-azo)(dioxane).

Supplementary Data 2

Cif file for (trans-azo)(pyrazine).

Supplementary Data 3

Cif file for trans-azo II.

Source data

Source Data Fig. 2

Figure2a_Green (532 nm)LaserIrrad_raw.txt: a text file containing the data seen in Fig. 2a. for the 532 nm laser (Green dots). Figure2a_Red (785 nm)LaserIrrad_raw.txt: a text file containing the data seen in Fig. 2a. for the 785 nm laser (red dots). Figure2b_red(785 nm)Laserirrad_raw.txt: the unprocessed Raman spectrum of (trans-azo)(dioxane) appearing in waterfall plot Fig. 2b. Figure2c_green(532 nm)Laserirrad_raw.txt: the unprocessed Raman spectrum of (trans-azo)(dioxane) appearing in waterfall plot Fig. 2c.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Borchers, T.H., Topić, F., Christopherson, JC. et al. Cold photo-carving of halogen-bonded co-crystals of a dye and a volatile co-former using visible light. Nat. Chem. 14, 574–581 (2022). https://doi.org/10.1038/s41557-022-00909-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-022-00909-0

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing