Abstract
The formation of co-crystals by the assembly of molecules with complementary molecular recognition functionalities is a popular strategy to design or improve a range of solid-state properties, including those relevant for pharmaceuticals, photo- or thermoresponsive materials and organic electronics. Here, we report halogen-bonded co-crystals of a fluorinated azobenzene derivative with a volatile component—either dioxane or pyrazine—that can be cut, carved or engraved with low-power visible light. This cold photo-carving process is enabled by the co-crystallization of a light-absorbing azo dye with a volatile component, which gives rise to materials that can be selectively disassembled with micrometre precision using low-power, non-burning laser irradiation or a commercial confocal microscope. The ability to shape co-crystals in three dimensions using laser powers of 0.5–20 mW—substantially lower than those used for metals, ceramics or polymers—is rationalized by photo-carving that targets the disruption of weak supramolecular interactions, rather than the covalent bonds or ionic structures targeted by conventional laser beam or focused ion beam machining processes.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
Crystallographic data for the structures reported in this article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 2068925 (for the (trans-azo)(dioxane) co-crystal), 2068926 (for the (trans-azo)(pyrazine) co-crystal) and 2068927 (for the trans-azo polymorph II). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/. Source data are provided with this paper. All other data supporting the findings of this study are available within the paper and its Supplementary Information files.
References
Mir, N. A., Dubey, R. & Desiraju, G. R. Strategy and methodology in the synthesis of multicomponent molecular solids: the quest for higher cocrystals. Acc. Chem. Res. 52, 2210–2220 (2019).
Aitipamula, S. et al. Polymorphs, salts, and cocrystals: what’s in a name? Cryst. Growth Des. 12, 2147–2152 (2012).
Desiraju, G. R. Crystal engineering: from molecule to crystal. J. Am. Chem. Soc. 135, 9952–9967 (2013).
Kavanagh, O. N., Croker, D. M., Walker, G. M. & Zaworotko, M. J. Pharmaceutical cocrystals: from serendipity to design to application. Drug Discov. Today 24, 796–804 (2019).
MacGillivray, L. R. et al. Supramolecular control of reactivity in the solid state: from templates to ladderanes to metal–organic frameworks. Acc. Chem. Res. 41, 280–291 (2008).
Bushuyev, O. S., Corkery, T. C., Barrett, C. J. & Friščić, T. Photo-mechanical azobenzene cocrystals and in situ X-ray diffraction monitoring of their optically-induced crystal-to-crystal isomerisation. Chem. Sci. 5, 3158–3164 (2014).
Zaworotko, M. J. Molecules to crystals, crystals to molecules … and back again? Cryst. Growth Des. 7, 4–9 (2007).
Lu, B., Fang, X. & Yan, D. Luminescent polymorphic co-crystals: a promising way to the diversity of molecular assembly, fluorescence polarization, and optical waveguide. ACS Appl. Mater. Interfaces 12, 31940–31951 (2020).
Christopherson, J.-C., Topić, F., Barrett, C. J. & Friščić, T. Halogen-bonded cocrystals as optical materials: next-generation control over light–matter interactions. Cryst. Growth Des. 18, 1245–1259 (2018).
Liu, C.-H., Niazi, M. R. & Perepichka, D. F. Strong enhancement of π‐electron donor/acceptor ability by complementary DD/AA hydrogen bonding. Angew. Chem. Int. Ed. 58, 17312–17321 (2019).
Aakeroy, C. B., Wijethunga, T. K., Benton, J. & Desper, J. Stabilizing volatile liquid chemicals using co-crystallization. Chem. Commun. 51, 2425–2428 (2015).
Cavallo, G. et al. The halogen bond. Chem. Rev. 116, 2478–2601 (2016).
Mukherjee, A., Tothadi, S. & Desiraju, G. R. Halogen bonds in crystal engineering: like hydrogen bonds yet different. Acc. Chem. Res. 47, 2514–2524 (2014).
Raatikainen, K. & Rissanen, K. Breathing molecular crystals: halogen- and hydrogen-bonded porous molecular crystals with solvent induced adaptation of the nanosized channels. Chem. Sci. 3, 1235–1239 (2012).
Metrangolo, P. et al. Nonporous organic solids capable of dynamically resolving mixtures of diiodoperfluoroalkanes. Science 323, 1461–1464 (2009).
Catalano, L. et al. Dynamic characterization of crystalline supramolecular rotors assembled through halogen bonding. J. Am. Chem. Soc. 137, 15386–15389 (2015).
Szell, P. M. J., Zablotny, S. & Bryce, D. L. Halogen bonding as a supramolecular dynamics catalyst. Nat. Commun. 10, 916 (2019).
Cavallo, G. et al. Superfluorinated ionic liquid crystals based on supramolecular, halogen-bonded anions. Angew. Chem. Int. Ed. 55, 6300–6304 (2016).
Sinnwell, M. A. & MacGillivray, L. R. Halogen-bond-templated [2+2] photodimerization in the solid state: directed synthesis and rare self-inclusion of a halogenated product. Angew. Chem. Int. Ed. 55, 3477–3480 (2016).
Priimagi, A., Cavallo, G., Metrangolo, P. & Resnati, G. The halogen bond in the design of functional supramolecular materials: recent advances. Acc. Chem. Res. 46, 2686–2695 (2013).
Saccone, M. & Catalano, L. Halogen bonding beyond crystals in materials science. J. Phys. Chem. B 123, 9281–9290 (2019).
Naumov, P., Chizhik, S., Panda, M. K., Nath, N. K. & Boldyreva, E. Mechanically responsive molecular crystals. Chem. Rev. 115, 12440–12490 (2015).
Bushuyev, O. S., Tomberg, A., Friščić, T. & Barrett, C. J. Shaping crystals with light: crystal-to-crystal isomerization and photomechanical effect in fluorinated azobenzenes. J. Am. Chem. Soc. 135, 12556–12559 (2013).
Natarajan, A. et al. The photoarrangement of α-santonin is a single-crystal-to-single-crystal reaction: a long kept secret in solid-state organic chemistry revealed. J. Am. Chem. Soc. 129, 9846–9847 (2007).
Chu, Q., Swenson, D. C. & MacGillivray, L. R. A single-crystal-to-single-crystal transformation mediated by argentophilic forces converts a finite metal complex into an infinite coordination network. Angew. Chem. Int. Ed. 44, 3569–3572 (2005).
Toh, N. L., Nagarathinam, M. & Vittal, J. J. Topochemical photodimerization in the coordination polymer [{(CF3CO2)(μ-O2CCH3)Zn}2(μ-bpe)2]n through single-crystal to single-crystal transformation. Angew. Chem. Int. Ed. 117, 2277–2281 (2005).
Biradha, K. & Santra, R. Crystal engineering of topochemical solid state reactions. Chem. Soc. Rev. 42, 950–967 (2013).
Sun, A., Lauher, J. W. & Goroff, N. S. Preparation of poly(diiododiacetylene), an ordered conjugated polymer of carbon and iodine. Science 312, 1030–1034 (2006).
Kitagawa, D. et al. Control of photomechanical crystal twisting by illumination direction. J. Am. Chem. Soc. 140, 4208–4212 (2018).
Tong, F., Al-Haidar, M., Zhu, L., Al-Kaysi, R. O. & Bardeen, C. J. Photoinduced peeling of molecular crystals. Chem. Commun. 55, 3709–3712 (2019).
Halabi, J. M., Ahmed, E., Sofela, S. & Naumov, P. Performance of molecular crystals in conversion of light to mechanical work. Proc. Natl Acad. Sci. USA 118, e2020604118 (2021).
Irie, M., Fukaminato, T., Matsuda, K. & Kobatake, S. Photochromism of diarylethene molecules and crystals: memories, switches, and actuators. Chem. Rev. 114, 12174–12277 (2014).
Halabi, J. M. et al. Spatial photocontrol of the optical output from an organic crystal waveguide. J. Am. Chem. Soc. 141, 14966–14970 (2019).
Karothu, D. P. et al. Mechanically robust amino acid crystals as fiber-optic transducers and wide bandpass filters for optical communication in the near-infrared. Nat. Commun. 12, 1326 (2021).
Duggirala, N. K., Perry, M. L., Almarsson, O. & Zaworotko, M. J. Pharmaceutical cocrystal: along the path to improved medicines. Chem. Commun. 52, 640–655 (2016).
Grobelny, A. L., Verdu, F. A. & Groeneman, R. H. Solvent-free synthesis and purification of a photoproduct via sublimation of a tetrahalogenated template. CrystEngComm 19, 3562–3565 (2017).
Yao, Y., Zhang, L., Leydecker, T. & Samorì, P. Direct photolithography on molecular crystals for high performance organic optoelectronic devices. J. Am. Chem. Soc. 140, 6984–6990 (2018).
Sun, J. & Litchinitser, N. M. Toward practical, subwavelength, visible-light photolithography with hyperlens. ACS Nano 12, 542–548 (2018).
Desbiolles, B. X. E., Bertsch, A. & Renaud, P. Ion beam etching redeposition for 3D multimaterial nanostructure manufacturing. Microsyst. Nanoeng. 5, 11 (2019).
Wang, Z. et al. Patterning organic/inorganic hybrid Bragg stacks by integrating one-dimensional photonic crystals and macrocavities through photolithography: toward tunable colorful patterns as highly selective sensors. ACS Appl. Mater. Interfaces 4, 1397–1403 (2012).
Ghorai, S. et al. From co-crystals to functional thin films: photolithography using [2+2] photodimerization. Chem. Sci. 4, 4304–4308 (2013).
Li, W. et al. Shaping organic microcrystals using focused ion beam milling. Cryst. Growth Des. 20, 1583–1589 (2020).
Wood, M. J. et al. Femtosecond laser micromachining of co-polymeric urethane materials. Appl. Surf. Sci. 483, 633–641 (2019).
Kandidov, V. P., Dormidonov, A. E., Kosareva, O. G., Chin, S. L. & Liu, W. in Self-Focusing: Past and Present: Fundamentals and Prospects (eds Boyd, R. W, Lukisova, S. G. & Shen, Y. R.) 371–298 (Springer, 2009).
Guan, L., Peng, K., Yang, Y., Qiu, X. & Wang, C. The nanofabrication of polydimethylsiloxane using a focused ion beam. Nanotechnology 20, 145301 (2009).
Alias, M. S. et al. Enhanced etching, surface damage recovery, and submicron patterning of hybrid perovskites using a chemically gas-assisted focused-ion beam for subwavelength grating photonic applications. J. Phys. Chem. Lett. 7, 137–142 (2016).
Bei, H., Shim, S., Miller, M. K., Pharr, G. M. & George, E. P. Effects of focused ion beam milling on the nanomechanical behavior of a molybdenum-alloy single crystal. Appl. Phys. Lett. 91, 111915 (2007).
Vesseur, E. J. R. et al. Surface plasmon polariton modes in a single-crystal Au nanoresonator fabricated using focused-ion-beam milling. Appl. Phys. Lett. 92, 083110 (2008).
Yager, K. G. & Barrett, C. J. Temperature modeling of laser-irradiated azo-polymer thin films. J. Chem. Phys. 120, 1089–1096 (2004).
Vainauskas, J., Topić, F., Bushuyev, O. S., Barrett, C. J. & Friščić, T. Halogen bonding to the azulene π-system: cocrystal design of pleochroism. Chem. Commun. 56, 15145–15148 (2020).
Lommerse, J. P. M., Stone, A. J., Taylor, R. & Allen, F. H. The nature and geometry of intermolecular interactions between halogens and oxygen or nitrogen. J. Am. Chem. Soc. 118, 3108–3116 (1996).
Mantina, M., Chamberlin, A. C., Valero, R., Cramer, C. J. & Truhlar, D. G. Consistent van der Waals radii for the whole main group. J. Phys. Chem. A 113, 5806–5812 (2009).
Bushuyev, O. S., Singleton, T. A. & Barrett, C. J. Fast, reversible, and general photomechanical motion in single crystals of various azo compounds using visible light. Adv. Mater. 25, 1796–1800 (2013).
Salzillo, T. & Brillante, A. Commenting on the photoreactions of anthracene derivatives in the solid state. CrystEngComm 21, 3127–3136 (2019).
Kim, K. et al. Light-directed soft mass migration for micro/nanophotonics. Adv. Opt. Mater. 7, 1900074 (2019).
Kitamura, I., Oishi, K., Hara, M., Nagano, S. & Seki, T. Photoinitiated Marangoni flow morphing in a liquid crystalline polymer film directed by super-inkjet printing patterns. Sci. Rep. 9, 2556 (2019).
Cheng, Y.-C., Lu, H.-C., Lee, X., Zeng, H. & Priimagi, A. Kirigami-based light-induced shape-morphing and locomotion. Adv. Mater. 32, 1906233 (2020).
Braga, D., Grepioni, F. & Lampronti, G. I. Supramolecular metathesis: co-former exchange in co-crystals of pyrazine with (R,R)-, (S,S)-, (R,S)- and (S,S/R,R)-tartaric acid. CrystEngComm 13, 3122–3124 (2011).
Antoine, J. A. & Lin, Q. Synthesis of azobenzenes using N-chlorosuccinimide and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU). J. Org. Chem. 82, 9873–9876 (2017).
APEX3 (Bruker AXS Inc., 2012).
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. J. Appl. Cryst. 48, 3–10 (2015).
Sheldrick, G. M. SHELXT—integrated space-group and crystal-structure determination. Acta Cryst. A71, 3–8 (2015).
Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Cryst. C71, 3–8 (2015).
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Cryst. 42, 339–341 (2009).
Farrugia, L. J. WinGX and ORTEP for Windows: an update. J. Appl. Cryst. 45, 849–854 (2012).
Frisch, M. J. et al. Gaussian 16, Revision C.01 (Gaussian, Inc., 2016).
Becke, A. D. Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).
Lee, C., Yang, W. & Parr, R. G. Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1998).
Ditchfield, R., Hehre, W. J. & Pople, J. A. Self‐consistent molecular‐orbital methods. IX. An extended Gaussian‐type basis for molecular‐orbital studies of organic molecules. J. Chem. Phys. 54, 724–728 (1971).
Glukhovtsev, M. N., Pross, A., McGrath, M. P. & Radom, L. Extension of Gaussian-2 (G2) theory to bromine- and iodine-containing molecules: use of effective core potentials. J. Chem. Phys. 103, 1878–1885 (1995).
Pritchard, B. P., Altarawy, D., Didier, B., Gibson, T. D. & Windus, T. L. New basis set exchange: an open, up-to-date resource for the molecular sciences community. J. Chem. Inf. Model. 59, 4814–4820 (2019).
Acknowledgements
We thank the Natural Sciences and Engineering Research Council (NSERC) Canada for their financial support of this work through Discovery Grants RGPIN-2019-05661 (C.J.B.), RGPIN-2017-06467 (T.F.) and Discovery Accelerator award RGPAS 507837-17 (T.F.), as well as the Government of Canada for a Tier-1 Canada Research Chair (T.F.), and Vanier Graduate (O.S.B.) and Banting Postdoctoral (F.T.) Fellowships. The funders had no role in the study design, data collection and analysis, decision to publish or preparation of the manuscript. We thank M. J. Harrington of McGill Chemistry for use of the confocal Raman microscope, R. D. Rogers of the University of Alabama for the use of a high-speed camera and S. Borchers for the image of the laser source used in Fig. 1d. We acknowledge the use of the Cedar supercomputer, enabled by WestGrid and Compute Canada.
Author information
Authors and Affiliations
Contributions
Experimental work was conducted by T.H.B., O.S.B., J.-C.C., F.T., J.V. and H.M.T. The experiment planning and analysis was completed jointly by T.H.B., O.S.B., J.-C.C., F.T., H.M.T., T.F. and C.J.B. The research was coordinated by T.F. and C.J.B. All the authors participated in preparing and/or editing the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Chemistry thanks Christopher Bardeen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Supplementary Information
Supplementary Figs. 1–48, Tables 1–3, discussion on polymorphism of trans-azo.
Supplementary Video 1
Photo-carving of (trans-azo)(pyrazine), performed using a 532 nm 15 mW laser.
Supplementary Video 2
Photo-carving of (trans-azo)(dioxane), performed using a 532 nm 10 mW laser.
Supplementary Video 3
Detailed photo-carving of (trans-azo)(dioxane) cocrystal independent of crystal face, performed using a 532 nm 10 mW laser.
Supplementary Video 4
Precision photo-carving of (trans-azo)(dioxane). A series of ~200 μm steps are carved through the crystal using a 532 nm 10 mW laser.
Supplementary Video 5
Slow motion video of (trans-azo)(dioxane) irradiated with a 140 ms pulse of a 10 mW 532 nm laser.
Supplementary Video 6
Slow motion photo-carving of (trans-azo)(dioxane) crystal, performed using a 532 nm 10 mW laser.
Supplementary Data 1
Cif file for (trans-azo)(dioxane).
Supplementary Data 2
Cif file for (trans-azo)(pyrazine).
Supplementary Data 3
Cif file for trans-azo II.
Source data
Source Data Fig. 2
Figure2a_Green (532 nm)LaserIrrad_raw.txt: a text file containing the data seen in Fig. 2a. for the 532 nm laser (Green dots). Figure2a_Red (785 nm)LaserIrrad_raw.txt: a text file containing the data seen in Fig. 2a. for the 785 nm laser (red dots). Figure2b_red(785 nm)Laserirrad_raw.txt: the unprocessed Raman spectrum of (trans-azo)(dioxane) appearing in waterfall plot Fig. 2b. Figure2c_green(532 nm)Laserirrad_raw.txt: the unprocessed Raman spectrum of (trans-azo)(dioxane) appearing in waterfall plot Fig. 2c.
Rights and permissions
About this article
Cite this article
Borchers, T.H., Topić, F., Christopherson, JC. et al. Cold photo-carving of halogen-bonded co-crystals of a dye and a volatile co-former using visible light. Nat. Chem. 14, 574–581 (2022). https://doi.org/10.1038/s41557-022-00909-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41557-022-00909-0