Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Multilayer stacks of polycyclic aromatic hydrocarbons

Abstract

Polycyclic aromatic hydrocarbons (PAHs) show promise for applications in functional devices such as organic photovoltaics and field-effect transistors, but, although nanometre-sized PAHs—often referred to as nanographenes—have been well investigated as single-layer molecules, their multilayer counterparts remain rather unexplored. Here we show the assembly of a C64 nanographene derivative (comprising a planar core decorated with four meta-terphenyl–imide moieties at its periphery) into multilayer stacks with smaller PAHs ranging from naphthalene to ovalene and hexabenzocoronene. The functionalized C64 nanographene serves as a ditopic host that can accommodate a smaller PAH on either side of its planar core, in cavities delimited by its bulky imide substituents. Bilayers and trilayers (that is, complexes with 1:1 and 1:2 host:guest ratios, respectively) were observed in solution, and dimers of these complexes as well as multilayer compounds were isolated in the solid state. Quantum-chemical calculations indicate that dispersion forces are the main stabilizing factor for these complexes.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Design and synthesis of the C64 nanographene host for the construction of multilayer nanographenes and schematic illustration of the formation process of multilayer nanographene complexes.
Fig. 2: Supramolecular multilayer nanographene complexes comprising C64 nanographene 1 and coronene.
Fig. 3: 1H NMR, UV–vis and fluorescence titration experiments of host 1 with guest coronene.
Fig. 4: ALMO-EDA plots for multilayer nanographene structures.

Data availability

Crystallographic data for the structures in this Article have been deposited at the Cambridge Crystallographic Data Centre under deposition nos. CCDC 2068629 (monolayer, 1), 2068630 (multilayer, [COR·1·COR]n), 2068631 (hexalayer, [COR·1·COR]2) and 2068632 (tetralayer, [COR·1·1·COR]). Copies of data can be obtained free of charge from www.ccdc.cam.ac.uk/structures/. Details of the synthesis and crystallographic analyses, UV–vis and fluorescence spectra, traces of cyclic and differential pulse voltammetry, plots of NMR titration and variable-temperature NMR experiments, DOSY NMR spectra, traces of ITC experiments and a description of the computational experiments are provided in the Supplementary Information. Source data are provided with this paper.

References

  1. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    CAS  PubMed  Google Scholar 

  2. Georgakilas, V. et al. Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem. Rev. 112, 6156–6214 (2012).

    CAS  PubMed  Google Scholar 

  3. Watson, M. D., Jäckel, F., Severin, N., Rabe, J. P. & Müllen, K. A hexa-peri-hexabenzocoronene cyclophane: an addition to the toolbox for molecular electronics. J. Am. Chem. Soc. 126, 1402–1407 (2004).

    CAS  PubMed  Google Scholar 

  4. Evans, P. J. et al. Synthesis of a helical bilayer nanographene. Angew. Chem. Int. Ed. 57, 6774–6779 (2018).

    CAS  Google Scholar 

  5. Zhao, X.-J. et al. Molecular bilayer graphene. Nat. Commun. 10, 3057 (2019).

    PubMed  PubMed Central  Google Scholar 

  6. Moshniaha, L. et al. Aromatic nanosandwich obtained by σ-dimerization of a nanographenoid π-radical. J. Am. Chem. Soc. 142, 3626–3635 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Young, R. M. & Wasielewski, M. R. Mixed electronic states in molecular dimers: connecting singlet fission, excimer formation and symmetry-breaking charge transfer. Acc. Chem. Res. 53, 1957–1968 (2020).

    CAS  PubMed  Google Scholar 

  8. Zhang, Y. et al. Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459, 820–823 (2009).

    CAS  PubMed  Google Scholar 

  9. Lui, C. H., Li, Z., Mak, K. F., Cappelluti, E. & Heinz, T. F. Observation of an electrically tunable bandgap in trilayer graphene. Nat. Phys. 7, 944–947 (2011).

    CAS  Google Scholar 

  10. Cao, Y. et al. Tunable correlated states and spin-polarized phases in twisted bilayer–bilayer graphene. Nature 583, 215–220 (2020).

    CAS  PubMed  Google Scholar 

  11. Matsumoto, I., Sekiya, R. & Haino, T. Self-assembly of nanographenes. Angew. Chem. Int. Ed. 60, 12706–12711 (2021).

    CAS  Google Scholar 

  12. Yoshizawa, M., Klosterman, J. K. & Fujita, M. Functional molecular flasks: new properties and reactions within discrete, self-assembled hosts. Angew. Chem. Int. Ed. 48, 3418–3438 (2009).

    CAS  Google Scholar 

  13. Juríček, M. et al. Induced-fit catalysis of corannulene bowl-to-bowl inversion. Nat. Chem. 6, 222–228 (2014).

    PubMed  Google Scholar 

  14. Dale, E. J. et al. Supramolecular explorations: exhibiting the extent of extended cationic cyclophanes. Acc. Chem. Res. 49, 262–273 (2016).

    CAS  PubMed  Google Scholar 

  15. Spenst, P. & Würthner, F. Photo- and redoxfunctional cyclophanes, macrocycles and catenanes based on aromatic bisimides. J. Photochem. Photobiol. C 31, 114–138 (2017).

    CAS  Google Scholar 

  16. Li, T. et al. Janusarene: a homoditopic molecular host. Angew. Chem. Int. Ed. 56, 9473–9477 (2017).

    CAS  Google Scholar 

  17. Xu, Y. & Delius, M. The supramolecular chemistry of strained carbon nanohoops. Angew. Chem. Int. Ed. 59, 559–573 (2020).

    CAS  Google Scholar 

  18. Benson, C. R. et al. Plug-and-play optical materials from fluorescent dyes and macrocycles. Chem 6, 1978–1997 (2020).

    CAS  Google Scholar 

  19. Narita, A., Wang, X.-Y., Feng, X. & Müllen, K. New advances in nanographene chemistry. Chem. Soc. Rev. 44, 6616–6643 (2015).

    CAS  PubMed  Google Scholar 

  20. Stępień, M., Gońka, E., Żyła, M. & Sprutta, N. Heterocyclic nanographenes and other polycyclic heteroaromatic compounds: synthetic routes, properties and applications. Chem. Rev. 117, 3479–3716 (2017).

    PubMed  Google Scholar 

  21. Ito, H., Segawa, Y., Murakami, K. & Itami, K. Polycyclic arene synthesis by annulative π-extension. J. Am. Chem. Soc. 141, 3–10 (2018).

    PubMed  Google Scholar 

  22. Hirai, M., Tanaka, N., Sakai, M. & Yamaguchi, S. Structurally constrained boron-, nitrogen-, silicon- and phosphorus-centered polycyclic π-conjugated systems. Chem. Rev. 119, 8291–8331 (2019).

    CAS  PubMed  Google Scholar 

  23. Liang, N., Meng, D. & Wang, Z. Giant rylene imide-based electron acceptors for organic photovoltaics. Acc. Chem. Res. 54, 961–975 (2021).

    CAS  PubMed  Google Scholar 

  24. Seifert, S., Shoyama, K., Schmidt, D. & Würthner, F. An electron-poor C64 nanographene by palladium-catalyzed cascade C–C bond formation: one-pot synthesis and single-crystal structure analysis. Angew. Chem. Int. Ed. 55, 6390–6395 (2016).

    CAS  Google Scholar 

  25. Shoyama, K., Mahl, M., Seifert, S. & Würthner, F. A general synthetic route to polycyclic aromatic dicarboximides by palladium-catalyzed annulation reaction. J. Org. Chem. 83, 5339–5346 (2018).

    CAS  PubMed  Google Scholar 

  26. Mahl, M., Shoyama, K., Krause, A. M., Schmidt, D. & Würthner, F. Base‐assisted imidization: a synthetic method for the introduction of bulky imide substituents to control packing and optical properties of naphthalene and perylene imides. Angew. Chem. Int. Ed. 59, 13401–13405 (2020).

    CAS  Google Scholar 

  27. Thordarson, P. Determining association constants from titration experiments in supramolecular chemistry. Chem. Soc. Rev. 40, 1305–1323 (2011).

    CAS  PubMed  Google Scholar 

  28. bindfit (Supramolecular, 2020); http://supramolecular.org

  29. Dale, E. J. et al. ExCage. J. Am. Chem. Soc. 136, 10669–10682 (2014).

    CAS  PubMed  Google Scholar 

  30. Mecozzi, S. & Rebek, J. Jr The 55% solution: a formula for molecular recognition in the liquid state. Chem. Eur. J. 4, 1016–1022 (1998).

    CAS  Google Scholar 

  31. Horn, P. R., Mao, Y. & Head-Gordon, M. Probing non-covalent interactions with a second generation energy decomposition analysis using absolutely localized molecular orbitals. Phys. Chem. Chem. Phys. 18, 23067–23079 (2016).

    CAS  PubMed  Google Scholar 

  32. Cai, J. et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466, 470–473 (2010).

    CAS  PubMed  Google Scholar 

  33. Ciesielski, A. et al. Dynamic covalent chemistry of bisimines at the solid/liquid interface monitored by scanning tunnelling microscopy. Nat. Chem. 6, 1017–1023 (2014).

    CAS  PubMed  Google Scholar 

  34. Feyter, S. D. & Schryver, F. C. D. Two-dimensional supramolecular self-assembly probed by scanning tunneling microscopy. Chem. Soc. Rev. 32, 139–150 (2003).

    PubMed  Google Scholar 

  35. Zhao, Y. et al. The emergence of anion-π catalysis. Acc. Chem. Res. 51, 2255–2263 (2018).

    CAS  PubMed  Google Scholar 

  36. Das, A. & Ghosh, S. Supramolecular assemblies by charge‐transfer interactions between donor and acceptor chromophores. Angew. Chem. Int. Ed. 53, 2038–2054 (2014).

    CAS  Google Scholar 

  37. Tayi, A. S. et al. Room-temperature ferroelectricity in supramolecular networks of charge-transfer complexes. Nature 488, 485–489 (2012).

    CAS  PubMed  Google Scholar 

  38. Kang, S. J. et al. A supramolecular complex in small‐molecule solar cells based on contorted aromatic molecules. Angew. Chem. Int. Ed. 51, 8594–8597 (2012).

    CAS  Google Scholar 

  39. Zhang, J., Jin, J., Xu, H., Zhang, Q. & Huang, W. Recent progress on organic donor-acceptor complexes as active elements in organic field-effect transistors. J. Mater. Chem. C 6, 3485–3498 (2018).

    CAS  Google Scholar 

  40. Jiang, H. & Hu, W. The emergence of organic single‐crystal electronics. Angew. Chem. Int. Ed. 59, 1408–1428 (2019).

    Google Scholar 

  41. Sheldrick, G. M. SHELXT—integrated space-group and crystal-structure determination. Acta Crystallogr. A 71, 3–8 (2015).

    Google Scholar 

  42. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. A 64, 112–122 (2008).

    CAS  PubMed  Google Scholar 

  43. Spek, A. L. PLATON SQUEEZE: a tool for the calculation of the disordered solvent contribution to the calculated structure factors. Acta Crystallogr. C 71, 9–18 (2015).

    CAS  Google Scholar 

  44. Spek, A. L. Single-crystal structure validation with the program PLATON. J. Appl. Crystallogr. 36, 7–13 (2003).

    CAS  Google Scholar 

  45. Guzei, I. A. An idealized molecular geometry library for refinement of poorly behaved molecular fragments with constraints. J. Appl. Crystallogr. 47, 806–809 (2014).

    CAS  Google Scholar 

  46. Spek, A. L. Structure validation in chemical crystallography. Acta Crystallogr. D 65, 148–155 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Evans, P. R. & Murshudov, G. N. How good are my data and what is the resolution? Acta Crystallogr. D 69, 1204–1214 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Pracht, P., Bohle, F. & Grimme, S. Automated exploration of the low-energy chemical space with fast quantum chemical methods. Phys. Chem. Chem. Phys. 22, 7169–7192 (2020).

    CAS  PubMed  Google Scholar 

  49. Spicher, S. & Grimme, S. Robust atomistic modeling of materials, organometallic and biochemical systems. Angew. Chem. Int. Ed. 59, 15665–15673 (2020).

    CAS  Google Scholar 

  50. Bannwarth, C., Ehlert, S. & Grimme, S. GFN2-xTB—an accurate and broadly parametrized self consistent tight-binding quantum chemical method with multipole electrostatics and density-dependent dispersion contributions. J. Chem. Theory Comput. 15, 1652–1671 (2019).

    CAS  PubMed  Google Scholar 

  51. Frisch, M. J. et al. Gaussian 16, Revision A.03 (Gaussian, 2009).

  52. Shao, Y. H. et al. Advances in molecular quantum chemistry contained in the Q-Chem 4 program package. Mol. Phys. 113, 184–215 (2015).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) for financial support (grant no. WU 317/20-2).

Author information

Authors and Affiliations

Authors

Contributions

F.W. initiated and supervised the entire work. M.M. performed the synthesis and complexation experiments. M.M. and M.A.N. grew the single crystals for crystallographic analysis. K.S. conducted the crystallographic measurements and analysis. M.A.N. and K.S. conducted the DFT calculations. All authors contributed to writing the manuscript.

Corresponding author

Correspondence to Frank Würthner.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Details of synthesis, crystallographic analysis and computation. Supplementary Figs. 1–22 and Tables 1–15.

Supplementary Data 1

Crystal structure of monolayer 1; CCDC 2068629.

Supplementary Data 2

Crystal structure of polylayer _(COR-1-COR)n; CCDC 2068630.

Supplementary Data 3

Crystal structure of hexalayer (COR-1-COR)2; CCDC 2068631.

Supplementary Data 4

Crystal structure of tetralayer COR-1-1-COR; CCDC 2068632.

Supplementary Source Data 1

Source Data Supplementary Figs. 7, 11a–d, 12a–c, 13b–d, 14a–c and 15. Fit of proton-signals from a 1H NMR titration experiment. Fit of UV–vis titration experiments of nanographene 1 in chloroform solutions. Fit of fluorescence titration experiments of nanographene 1 in chloroform solutions. Comparison of the average Gibbs free energies from UV–vis and fluorescence titration experiments with different guest molecules.

Source data

Source Data Fig. 4

Computed values of interaction energies from ALMO-EDA.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mahl, M., Niyas, M.A., Shoyama, K. et al. Multilayer stacks of polycyclic aromatic hydrocarbons. Nat. Chem. 14, 457–462 (2022). https://doi.org/10.1038/s41557-021-00861-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-021-00861-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing