Abstract
Photosynthetic organisms convert sunlight to electricity with near unity quantum efficiency. Absorbed photoenergy transfers through a network of chromophores positioned within protein scaffolds, which fluctuate due to thermal motion. The resultant variation in the individual energy transfer steps has not yet been measured, and so how the efficiency is robust to this variation has not been determined. Here, we describe single-molecule pump–probe spectroscopy with facile spectral tuning and its application to the ultrafast dynamics of single allophycocyanin, a light-harvesting protein from cyanobacteria. We disentangled the energy transfer and energetic relaxation from nuclear motion using the spectral dependence of the dynamics. We observed an asymmetric distribution of timescales for energy transfer and a slower and more heterogeneous distribution of timescales for energetic relaxation, which was due to the impact of the protein environment. Collectively, these results suggest that energy transfer is robust to protein fluctuations, a prerequisite for efficient light harvesting.

This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout



Data availability
The raw photon stream used to construct the single-molecule pump–probe traces and the corresponding fluorescence lifetime histograms are available at https://doi.org/10.5281/zenodo.5541825. Source data are provided with this paper.
References
Blankenship, R. E. Molecular Mechanisms of Photosynthesis (John Wiley & Sons, 2014).
Ishizaki, A. & Fleming, G. R. Unified treatment of quantum coherent and incoherent hopping dynamics in electronic energy transfer: reduced hierarchy equation approach. J. Chem. Phys. 130, 234111 (2009).
Ishizaki, A., Calhoun, T. R., Schlau-Cohen, G. S. & Fleming, G. R. Quantum coherence and its interplay with protein environments in photosynthetic electronic energy transfer. Phys. Chem. Chem. Phys. 12, 7319–7337 (2010).
Novoderezhkin, V. I. & van Grondelle, R. Physical origins and models of energy transfer in photosynthetic light-harvesting. Phys. Chem. Chem. Phys. 12, 7352–7365 (2010).
Şener, M. et al. Förster energy transfer theory as reflected in the structures of photosynthetic light-harvesting systems. Chem. Phys. Chem. 12, 518–531 (2011).
Scholes, G. D. Long-range resonance energy transfer in molecular systems. Annu. Rev. Phys. Chem. 54, 57–87 (2003).
van Amerongen, H., Valkunas, L. & van Grondelle, R. Photosynthetic Excitons (World Scientific, 2000).
Blankenship, R. E. et al. Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 332, 805–809 (2011).
Lerner, E. et al. Toward dynamic structural biology: two decades of single-molecule Förster resonance energy transfer. Science 359, eaan1133 (2018).
Kondo, T., Chen, W. J. & Schlau-Cohen, G. S. Single-molecule fluorescence spectroscopy of photosynthetic systems. Chem. Rev. 117, 860–898 (2017).
Beane, G., Devkota, T., Brown, B. S. & Hartland, G. V. Ultrafast measurements of the dynamics of single nanostructures: a review. Rep. Prog. Phys. 82, 016401 (2018).
Cogdell, R. J., Gall, A. & Köhler, J. The architecture and function of the light-harvesting apparatus of purple bacteria: from single molecules to in vivo membranes. Quart. Rev. Biophys. 39, 227–324 (2006).
van Dijk, E. M. et al. Single-molecule pump-probe detection resolves ultrafast pathways in individual and coupled quantum systems. Phys. Rev. Lett. 94, 078302 (2005).
van Dijk, E., Hernando, J., García-Parajó, M. F. & van Hulst, N. F. Single-molecule pump-probe experiments reveal variations in ultrafast energy redistribution. J. Chem. Phys. 123, 064703 (2005).
Hernando, J. et al. Effect of disorder on ultrafast exciton dynamics probed by single molecule spectroscopy. Phys. Rev. Lett. 97, 216403 (2006).
Malý, P., Michael Gruber, J., Cogdell, R. J., Mančal, T. & van Grondelle, R. Ultrafast energy relaxation in single light-harvesting complexes. Proc. Natl Acad. Sci. USA 113, 2934–2939 (2016).
Hildner, R., Brinks, D., Nieder, J. B., Cogdell, R. J. & van Hulst, N. F. Quantum coherent energy transfer over varying pathways in single light-harvesting complexes. Science 340, 1448–1451 (2013).
Brinks, D. et al. Visualizing and controlling vibrational wave packets of single molecules. Nature 465, 905–908 (2010).
Malý, P., Gardiner, A. T., Cogdell, R. J., van Grondelle, R. & Mančal, T. Robust light harvesting by a noisy antenna. Phys. Chem. Chem. Phys. 20, 4360–4372 (2018).
Womick, J. M. & Moran, A. M. Vibronic enhancement of exciton sizes and energy transport in photosynthetic complexes. J. Phys. Chem. B 115, 1347–1356 (2011).
Womick, J. M. & Moran, A. M. Nature of excited states and relaxation mechanisms in C-phycocyanin. J. Phys. Chem. B 113, 15771–15782 (2009).
Womick, J. M., Miller, S. A. & Moran, A. M. Toward the origin of exciton electronic structure in phycobiliproteins. J. Chem. Phys. 133, 07B603 (2010).
Womick, J. M. & Moran, A. M. Exciton coherence and energy transport in the light-harvesting dimers of allophycocyanin. J. Phys. Chem. B 113, 15747–15759 (2009).
Edington, M. D., Riter, R. E. & Beck, W. F. Femtosecond transient hole-burning detection of interexciton-state radiationless decay in allophycocyanin trimers. J. Phys. Chem. B 101, 4473–4477 (1997).
Edington, M. D., Riter, R. E. & Beck, W. F. Interexciton-state relaxation and exciton localization in allophycocyanin trimers. J. Phys. Chem. 100, 14206–14217 (1996).
Edington, M. D., Riter, R. E. & Beck, W. F. Evidence for coherent energy transfer in allophycocyanin trimers. J. Phys. Chem. 99, 15699–15704 (1995).
Beck, W. F. & Sauer, K. Energy-transfer and exciton-state relaxation processes in allophycocyanin. J. Phys. Chem. 96, 4658–4666 (1992).
Riter, R. R., Edington, M. D. & Beck, W. F. Protein-matrix solvation dynamics in the α subunit of C-phycocyanin. J. Phys. Chem. 100, 14198–14205 (1996).
Homoelle, B. J., Edington, M. D., Diffey, W. M. & Beck, W. F. Stimulated photon-echo and transient-grating studies of protein-matrix solvation dynamics and interexciton-state radiationless decay in α phycocyanin and allophycocyanin. J. Phys. Chem. B 102, 3044–3052 (1998).
Goldsmith, R. H. & Moerner, W. E. Watching conformational- and photodynamics of single fluorescent proteins in solution. Nat. Chem. 2, 179–186 (2010).
Wang, Q. & Moerner, W. E. Dissecting pigment architecture of individual photosynthetic antenna complexes in solution. Proc. Natl Acad. Sci. USA 112, 13880–13885 (2015).
Squires, A. H. & Moerner, W. E. Direct single-molecule measurements of phycocyanobilin photophysics in monomeric C-phycocyanin. Proc. Natl Acad. Sci. USA 114, 9779–9784 (2017).
Gwizdala, M., Berera, R., Kirilovsky, D., van Grondelle, R. & PJ Krüger, T. Controlling light harvesting with light. J. Am. Chem. Soc. 138, 11616–11622 (2016).
Ying, L. & Xie, X. S. Fluorescence spectroscopy, exciton dynamics, and photochemistry of single allophycocyanin trimers. J. Phys. Chem. B 102, 10399–10409 (1998).
Loos, D., Cotlet, M., De Schryver, F., Habuchi, S. & Hofkens, J. Single-molecule spectroscopy selectively probes donor and acceptor chromophores in the phycobiliprotein allophycocyanin. Biophys. J. 87, 2598–2608 (2004).
MacColl, R. Cyanobacterial phycobilisomes. J. Struct. Biol. 124, 311–334 (1998).
Brejc, K., Ficner, R., Huber, R. & Steinbacher, S. Isolation, crystallization, crystal structure analysis and refinement of allophycocyanin from the cyanobacterium Spirulina platensis at 2.3 Å resolution. J. Molec. Biol. 249, 424–440 (1995).
Xie, S., Du, M., Mets, L. & Fleming, G. R. in Time-Resolved Laser Spectroscopy in Biochemistry III Vol. 1640 (ed. Lakowicz, J. R.) 690–706 (International Society for Optics and Photonics, 1992).
Mohseni, M., Rebentrost, P., Lloyd, S. & Aspuru-Guzik, A. Environment-assisted quantum walks in photosynthetic energy transfer. J. Chem. Phys. 129, 11B603 (2008).
Rancova, O., Jakučionis, M., Valkunas, L. & Abramavicius, D. Origin of non-Gaussian site energy disorder in molecular aggregates. Chem. Phys. Lett. 674, 120–124 (2017).
Moya, R., Kondo, T., Norris, A. C. & Schlau-Cohen, G. S. Spectrally-tunable femtosecond single-molecule pump-probe spectroscopy. Opt. Express 29, 28246–28256 (2021).
Curutchet, C. et al. Photosynthetic light-harvesting is tuned by the heterogeneous polarizable environment of the protein. J. Am. Chem. Soc. 133, 3078–3084 (2011).
Homoelle, B. J. & Beck, W. F. Solvent accessibility of the phycocyanobilin chromophore in the α subunit of C-phycocyanin: implications for a molecular mechanism for inertial protein-matrix solvation dynamics. Biochemistry 36, 12970–12975 (1997).
Stratt, R. M. & Cho, M. The short-time dynamics of solvation. J. Chem. Phys. 100, 6700–6708 (1994).
Ferwerda, H. A., Terpstra, J. & Wiersma, D. A. Discussion of a “coherent artifact” in four-wave mixing experiments. J. Chem. Phys. 91, 3296–3305 (1989).
Riter, R. E., Edington, M. D. & Beck, W. F. Isolated-chromophore and exciton-state photophysics in C-phycocyanin trimers. J. Phys. Chem. B 101, 2366–2371 (1997).
McGregor, A., Klartag, M., David, L. & Adir, N. Allophycocyanin trimer stability and functionality are primarily due to polar enhanced hydrophobicity of the phycocyanobilin binding pocket. J. Mol. Biol. 384, 406–421 (2008).
Jumper, C. C. et al. Broad-band pump–probe spectroscopy quantifies ultrafast solvation dynamics of proteins and molecules. J. Phys. Chem. Lett. 7, 4722–4731 (2016).
Biedermannová, L. & Schneider, B. Hydration of proteins and nucleic acids: advances in experiment and theory. A review. Biochim. Biophys. Acta 1860, 1821–1835 (2016).
Chenu, A. & Scholes, G. D. Coherence in energy transfer and photosynthesis. Annu. Rev. Phys. Chem. 66, 69–96 (2015).
Jumper, C. C., Rafiq, S., Wang, S. & Scholes, G. D. From coherent to vibronic light harvesting in photosynthesis. Curr. Opin. Chem. Biol. 47, 39–46 (2018).
Müller, M., Squier, J. & Brakenhoff, G. J. Measurement of femtosecond pulses in the focal point of a high-numerical-aperture lens by two-photon absorption. Opt. Lett. 20, 1038–1040 (1995).
van Dijk, E. M. H. P., Hernando, J., García-Parajó, M. F. & van Hulst, N. F. Single-molecule pump-probe experiments reveal variations in ultrafast energy redistribution. J. Chem. Phys. 123, 064703 (2005).
van Dijk, E. M. H. P. et al. Single-molecule pump-probe detection resolves ultrafast pathways in individual and coupled quantum systems. Phys. Rev. Lett. 94, 078302 (2005).
Pawitan, Y. In All Likelihood: Statistical Modelling and Inference Using Likelihood (Oxford Univ. Press, 2001).
Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007).
Aitken, C. E., Marshall, R. A. & Puglisi, J. D. An oxygen scavenging system for improvement of dye stability in single-molecule fluorescence experiments. Biophys. J. 94, 1826–1835 (2008).
Acknowledgements
This work was supported by the National Institutes of Health Director’s New Innovator Award 1DP2GM128200-01 and a Beckman Young Investigator Award (G.S.S.-C.). R.M. acknowledges a National Science Foundation Graduate Research Fellowship. T.K. acknowledges a Japan Science and Technology Agency PRESTO (no. JPMJPR18G7) and a Japan Society for the Promotion of Science Grants-in-Aid for Scientific Research (no. 19H02665). G.S.S.-C. also acknowledges a Smith Family Award for Excellence in Biomedical Research, Sloan Research Fellowship in Chemistry and a CIFAR Global Scholar Award.
Author information
Authors and Affiliations
Contributions
R.M., T.K. and G.S.S.-C. conceived and designed the experiments. R.M. and A.C.N. performed the experiments. R.M. and G.S.S.-C. analysed the data. R.M., A.C.N. and G.S.S.-C. co-wrote the paper. All authors discussed the results and commented on the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information Nature Chemistry thanks Pavel Malý, Tomas Polivka and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Extended data
Extended Data Fig. 1 Single-molecule pump–probe experiments on C-phycocyanin.
(a) The structure of C-phycocyanin (Protein Data Bank ID Code 1GH0) is shown with a callout of a tetrapyrole chromophore (purple). (b) The corresponding absorption (solid) and emission (dashed) spectra are shown with the 610 nm excitation shown in blue. (c-f) Representative traces for C-phycocyanin with 610 nm excitation are with values of 125 ± 2, 503 ± 124, 113 ± 29, and 270 ± 51 fs, respectively. Errors given are the standard error of the maximum likelihood estimate.
Extended Data Fig. 2 Gaussian mixture model extracts two rate components.
The distributions of energy relaxation rates from the bright (top) and quenched (bottom) populations were fit to a two-component Gaussian mixture model, which is shown in dashed lines. All parameters of the Gaussian mixture model fit are given in Supplementary Table 4.
Supplementary information
Supplementary Information
Supplementary Figs. 1–19, Discussion, and experimental and theoretical methodology.
Source data
Source Data Fig. 1
Optical spectra and fluorescence time series.
Source Data Fig. 2
Numerical data for histograms.
Source Data Fig. 3
Numerical data for histograms.
Source Data Extended Data Fig. 1
Numerical data for histograms.
Source Data Extended Data Fig. 2
Optical spectra and fluorescence time series.
Rights and permissions
About this article
Cite this article
Moya, R., Norris, A.C., Kondo, T. et al. Observation of robust energy transfer in the photosynthetic protein allophycocyanin using single-molecule pump–probe spectroscopy. Nat. Chem. 14, 153–159 (2022). https://doi.org/10.1038/s41557-021-00841-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41557-021-00841-9
This article is cited by
-
Facing the fluctuations
Nature Chemistry (2022)