Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Observation of robust energy transfer in the photosynthetic protein allophycocyanin using single-molecule pump–probe spectroscopy

Abstract

Photosynthetic organisms convert sunlight to electricity with near unity quantum efficiency. Absorbed photoenergy transfers through a network of chromophores positioned within protein scaffolds, which fluctuate due to thermal motion. The resultant variation in the individual energy transfer steps has not yet been measured, and so how the efficiency is robust to this variation has not been determined. Here, we describe single-molecule pump–probe spectroscopy with facile spectral tuning and its application to the ultrafast dynamics of single allophycocyanin, a light-harvesting protein from cyanobacteria. We disentangled the energy transfer and energetic relaxation from nuclear motion using the spectral dependence of the dynamics. We observed an asymmetric distribution of timescales for energy transfer and a slower and more heterogeneous distribution of timescales for energetic relaxation, which was due to the impact of the protein environment. Collectively, these results suggest that energy transfer is robust to protein fluctuations, a prerequisite for efficient light harvesting.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: SM2P experiments on APC.
Fig. 2: Distributions of energetic relaxation and energy transfer timescales for APC.
Fig. 3: Comparison of distributions of energy relaxation timescales.

Similar content being viewed by others

Data availability

The raw photon stream used to construct the single-molecule pump–probe traces and the corresponding fluorescence lifetime histograms are available at https://doi.org/10.5281/zenodo.5541825. Source data are provided with this paper.

References

  1. Blankenship, R. E. Molecular Mechanisms of Photosynthesis (John Wiley & Sons, 2014).

  2. Ishizaki, A. & Fleming, G. R. Unified treatment of quantum coherent and incoherent hopping dynamics in electronic energy transfer: reduced hierarchy equation approach. J. Chem. Phys. 130, 234111 (2009).

    Article  PubMed  Google Scholar 

  3. Ishizaki, A., Calhoun, T. R., Schlau-Cohen, G. S. & Fleming, G. R. Quantum coherence and its interplay with protein environments in photosynthetic electronic energy transfer. Phys. Chem. Chem. Phys. 12, 7319–7337 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Novoderezhkin, V. I. & van Grondelle, R. Physical origins and models of energy transfer in photosynthetic light-harvesting. Phys. Chem. Chem. Phys. 12, 7352–7365 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Şener, M. et al. Förster energy transfer theory as reflected in the structures of photosynthetic light-harvesting systems. Chem. Phys. Chem. 12, 518–531 (2011).

    Article  PubMed  Google Scholar 

  6. Scholes, G. D. Long-range resonance energy transfer in molecular systems. Annu. Rev. Phys. Chem. 54, 57–87 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. van Amerongen, H., Valkunas, L. & van Grondelle, R. Photosynthetic Excitons (World Scientific, 2000).

    Book  Google Scholar 

  8. Blankenship, R. E. et al. Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 332, 805–809 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Lerner, E. et al. Toward dynamic structural biology: two decades of single-molecule Förster resonance energy transfer. Science 359, eaan1133 (2018).

  10. Kondo, T., Chen, W. J. & Schlau-Cohen, G. S. Single-molecule fluorescence spectroscopy of photosynthetic systems. Chem. Rev. 117, 860–898 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. Beane, G., Devkota, T., Brown, B. S. & Hartland, G. V. Ultrafast measurements of the dynamics of single nanostructures: a review. Rep. Prog. Phys. 82, 016401 (2018).

    Article  PubMed  Google Scholar 

  12. Cogdell, R. J., Gall, A. & Köhler, J. The architecture and function of the light-harvesting apparatus of purple bacteria: from single molecules to in vivo membranes. Quart. Rev. Biophys. 39, 227–324 (2006).

    Article  CAS  Google Scholar 

  13. van Dijk, E. M. et al. Single-molecule pump-probe detection resolves ultrafast pathways in individual and coupled quantum systems. Phys. Rev. Lett. 94, 078302 (2005).

    Article  PubMed  Google Scholar 

  14. van Dijk, E., Hernando, J., García-Parajó, M. F. & van Hulst, N. F. Single-molecule pump-probe experiments reveal variations in ultrafast energy redistribution. J. Chem. Phys. 123, 064703 (2005).

    Article  Google Scholar 

  15. Hernando, J. et al. Effect of disorder on ultrafast exciton dynamics probed by single molecule spectroscopy. Phys. Rev. Lett. 97, 216403 (2006).

    Article  PubMed  Google Scholar 

  16. Malý, P., Michael Gruber, J., Cogdell, R. J., Mančal, T. & van Grondelle, R. Ultrafast energy relaxation in single light-harvesting complexes. Proc. Natl Acad. Sci. USA 113, 2934–2939 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hildner, R., Brinks, D., Nieder, J. B., Cogdell, R. J. & van Hulst, N. F. Quantum coherent energy transfer over varying pathways in single light-harvesting complexes. Science 340, 1448–1451 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Brinks, D. et al. Visualizing and controlling vibrational wave packets of single molecules. Nature 465, 905–908 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Malý, P., Gardiner, A. T., Cogdell, R. J., van Grondelle, R. & Mančal, T. Robust light harvesting by a noisy antenna. Phys. Chem. Chem. Phys. 20, 4360–4372 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Womick, J. M. & Moran, A. M. Vibronic enhancement of exciton sizes and energy transport in photosynthetic complexes. J. Phys. Chem. B 115, 1347–1356 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Womick, J. M. & Moran, A. M. Nature of excited states and relaxation mechanisms in C-phycocyanin. J. Phys. Chem. B 113, 15771–15782 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Womick, J. M., Miller, S. A. & Moran, A. M. Toward the origin of exciton electronic structure in phycobiliproteins. J. Chem. Phys. 133, 07B603 (2010).

    Article  Google Scholar 

  23. Womick, J. M. & Moran, A. M. Exciton coherence and energy transport in the light-harvesting dimers of allophycocyanin. J. Phys. Chem. B 113, 15747–15759 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Edington, M. D., Riter, R. E. & Beck, W. F. Femtosecond transient hole-burning detection of interexciton-state radiationless decay in allophycocyanin trimers. J. Phys. Chem. B 101, 4473–4477 (1997).

    Article  CAS  Google Scholar 

  25. Edington, M. D., Riter, R. E. & Beck, W. F. Interexciton-state relaxation and exciton localization in allophycocyanin trimers. J. Phys. Chem. 100, 14206–14217 (1996).

    Article  CAS  Google Scholar 

  26. Edington, M. D., Riter, R. E. & Beck, W. F. Evidence for coherent energy transfer in allophycocyanin trimers. J. Phys. Chem. 99, 15699–15704 (1995).

    Article  CAS  Google Scholar 

  27. Beck, W. F. & Sauer, K. Energy-transfer and exciton-state relaxation processes in allophycocyanin. J. Phys. Chem. 96, 4658–4666 (1992).

    Article  CAS  Google Scholar 

  28. Riter, R. R., Edington, M. D. & Beck, W. F. Protein-matrix solvation dynamics in the α subunit of C-phycocyanin. J. Phys. Chem. 100, 14198–14205 (1996).

    Article  CAS  Google Scholar 

  29. Homoelle, B. J., Edington, M. D., Diffey, W. M. & Beck, W. F. Stimulated photon-echo and transient-grating studies of protein-matrix solvation dynamics and interexciton-state radiationless decay in α phycocyanin and allophycocyanin. J. Phys. Chem. B 102, 3044–3052 (1998).

    Article  CAS  Google Scholar 

  30. Goldsmith, R. H. & Moerner, W. E. Watching conformational- and photodynamics of single fluorescent proteins in solution. Nat. Chem. 2, 179–186 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang, Q. & Moerner, W. E. Dissecting pigment architecture of individual photosynthetic antenna complexes in solution. Proc. Natl Acad. Sci. USA 112, 13880–13885 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Squires, A. H. & Moerner, W. E. Direct single-molecule measurements of phycocyanobilin photophysics in monomeric C-phycocyanin. Proc. Natl Acad. Sci. USA 114, 9779–9784 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gwizdala, M., Berera, R., Kirilovsky, D., van Grondelle, R. & PJ Krüger, T. Controlling light harvesting with light. J. Am. Chem. Soc. 138, 11616–11622 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. Ying, L. & Xie, X. S. Fluorescence spectroscopy, exciton dynamics, and photochemistry of single allophycocyanin trimers. J. Phys. Chem. B 102, 10399–10409 (1998).

    Article  CAS  Google Scholar 

  35. Loos, D., Cotlet, M., De Schryver, F., Habuchi, S. & Hofkens, J. Single-molecule spectroscopy selectively probes donor and acceptor chromophores in the phycobiliprotein allophycocyanin. Biophys. J. 87, 2598–2608 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. MacColl, R. Cyanobacterial phycobilisomes. J. Struct. Biol. 124, 311–334 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Brejc, K., Ficner, R., Huber, R. & Steinbacher, S. Isolation, crystallization, crystal structure analysis and refinement of allophycocyanin from the cyanobacterium Spirulina platensis at 2.3 Å resolution. J. Molec. Biol. 249, 424–440 (1995).

    Article  CAS  PubMed  Google Scholar 

  38. Xie, S., Du, M., Mets, L. & Fleming, G. R. in Time-Resolved Laser Spectroscopy in Biochemistry III Vol. 1640 (ed. Lakowicz, J. R.) 690–706 (International Society for Optics and Photonics, 1992).

  39. Mohseni, M., Rebentrost, P., Lloyd, S. & Aspuru-Guzik, A. Environment-assisted quantum walks in photosynthetic energy transfer. J. Chem. Phys. 129, 11B603 (2008).

    Article  Google Scholar 

  40. Rancova, O., Jakučionis, M., Valkunas, L. & Abramavicius, D. Origin of non-Gaussian site energy disorder in molecular aggregates. Chem. Phys. Lett. 674, 120–124 (2017).

    Article  CAS  Google Scholar 

  41. Moya, R., Kondo, T., Norris, A. C. & Schlau-Cohen, G. S. Spectrally-tunable femtosecond single-molecule pump-probe spectroscopy. Opt. Express 29, 28246–28256 (2021).

    Article  CAS  PubMed  Google Scholar 

  42. Curutchet, C. et al. Photosynthetic light-harvesting is tuned by the heterogeneous polarizable environment of the protein. J. Am. Chem. Soc. 133, 3078–3084 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Homoelle, B. J. & Beck, W. F. Solvent accessibility of the phycocyanobilin chromophore in the α subunit of C-phycocyanin: implications for a molecular mechanism for inertial protein-matrix solvation dynamics. Biochemistry 36, 12970–12975 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. Stratt, R. M. & Cho, M. The short-time dynamics of solvation. J. Chem. Phys. 100, 6700–6708 (1994).

    Article  CAS  Google Scholar 

  45. Ferwerda, H. A., Terpstra, J. & Wiersma, D. A. Discussion of a “coherent artifact” in four-wave mixing experiments. J. Chem. Phys. 91, 3296–3305 (1989).

    Article  CAS  Google Scholar 

  46. Riter, R. E., Edington, M. D. & Beck, W. F. Isolated-chromophore and exciton-state photophysics in C-phycocyanin trimers. J. Phys. Chem. B 101, 2366–2371 (1997).

    Article  CAS  Google Scholar 

  47. McGregor, A., Klartag, M., David, L. & Adir, N. Allophycocyanin trimer stability and functionality are primarily due to polar enhanced hydrophobicity of the phycocyanobilin binding pocket. J. Mol. Biol. 384, 406–421 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Jumper, C. C. et al. Broad-band pump–probe spectroscopy quantifies ultrafast solvation dynamics of proteins and molecules. J. Phys. Chem. Lett. 7, 4722–4731 (2016).

    Article  CAS  PubMed  Google Scholar 

  49. Biedermannová, L. & Schneider, B. Hydration of proteins and nucleic acids: advances in experiment and theory. A review. Biochim. Biophys. Acta 1860, 1821–1835 (2016).

    Article  PubMed  Google Scholar 

  50. Chenu, A. & Scholes, G. D. Coherence in energy transfer and photosynthesis. Annu. Rev. Phys. Chem. 66, 69–96 (2015).

    Article  CAS  PubMed  Google Scholar 

  51. Jumper, C. C., Rafiq, S., Wang, S. & Scholes, G. D. From coherent to vibronic light harvesting in photosynthesis. Curr. Opin. Chem. Biol. 47, 39–46 (2018).

    Article  CAS  PubMed  Google Scholar 

  52. Müller, M., Squier, J. & Brakenhoff, G. J. Measurement of femtosecond pulses in the focal point of a high-numerical-aperture lens by two-photon absorption. Opt. Lett. 20, 1038–1040 (1995).

    Article  PubMed  Google Scholar 

  53. van Dijk, E. M. H. P., Hernando, J., García-Parajó, M. F. & van Hulst, N. F. Single-molecule pump-probe experiments reveal variations in ultrafast energy redistribution. J. Chem. Phys. 123, 064703 (2005).

    Article  CAS  Google Scholar 

  54. van Dijk, E. M. H. P. et al. Single-molecule pump-probe detection resolves ultrafast pathways in individual and coupled quantum systems. Phys. Rev. Lett. 94, 078302 (2005).

    Article  PubMed  Google Scholar 

  55. Pawitan, Y. In All Likelihood: Statistical Modelling and Inference Using Likelihood (Oxford Univ. Press, 2001).

  56. Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Aitken, C. E., Marshall, R. A. & Puglisi, J. D. An oxygen scavenging system for improvement of dye stability in single-molecule fluorescence experiments. Biophys. J. 94, 1826–1835 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health Director’s New Innovator Award 1DP2GM128200-01 and a Beckman Young Investigator Award (G.S.S.-C.). R.M. acknowledges a National Science Foundation Graduate Research Fellowship. T.K. acknowledges a Japan Science and Technology Agency PRESTO (no. JPMJPR18G7) and a Japan Society for the Promotion of Science Grants-in-Aid for Scientific Research (no. 19H02665). G.S.S.-C. also acknowledges a Smith Family Award for Excellence in Biomedical Research, Sloan Research Fellowship in Chemistry and a CIFAR Global Scholar Award.

Author information

Authors and Affiliations

Authors

Contributions

R.M., T.K. and G.S.S.-C. conceived and designed the experiments. R.M. and A.C.N. performed the experiments. R.M. and G.S.S.-C. analysed the data. R.M., A.C.N. and G.S.S.-C. co-wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Gabriela S. Schlau-Cohen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Chemistry thanks Pavel Malý, Tomas Polivka and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Single-molecule pump–probe experiments on C-phycocyanin.

(a) The structure of C-phycocyanin (Protein Data Bank ID Code 1GH0) is shown with a callout of a tetrapyrole chromophore (purple). (b) The corresponding absorption (solid) and emission (dashed) spectra are shown with the 610 nm excitation shown in blue. (c-f) Representative traces for C-phycocyanin with 610 nm excitation are with values of 125 ± 2, 503 ± 124, 113 ± 29, and 270 ± 51 fs, respectively. Errors given are the standard error of the maximum likelihood estimate.

Source data

Extended Data Fig. 2 Gaussian mixture model extracts two rate components.

The distributions of energy relaxation rates from the bright (top) and quenched (bottom) populations were fit to a two-component Gaussian mixture model, which is shown in dashed lines. All parameters of the Gaussian mixture model fit are given in Supplementary Table 4.

Source data

Supplementary information

Supplementary Information

Supplementary Figs. 1–19, Discussion, and experimental and theoretical methodology.

Source data

Source Data Fig. 1

Optical spectra and fluorescence time series.

Source Data Fig. 2

Numerical data for histograms.

Source Data Fig. 3

Numerical data for histograms.

Source Data Extended Data Fig. 1

Numerical data for histograms.

Source Data Extended Data Fig. 2

Optical spectra and fluorescence time series.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moya, R., Norris, A.C., Kondo, T. et al. Observation of robust energy transfer in the photosynthetic protein allophycocyanin using single-molecule pump–probe spectroscopy. Nat. Chem. 14, 153–159 (2022). https://doi.org/10.1038/s41557-021-00841-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-021-00841-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing