Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Directing-group-free catalytic dicarbofunctionalization of unactivated alkenes

An Author Correction to this article was published on 13 January 2022

This article has been updated


In the absence of directing auxiliaries, the catalytic addition of carbogenic groups to unactivated alkenes with control of regioselectivity remains an ongoing challenge in organic chemistry. Here we describe a directing-group-free, nickel-catalysed strategy that couples a broad array of unactivated and activated olefins with aryl-substituted triflates and organometallic nucleophiles to afford diarylation adducts in either regioisomeric form, in up to 93% yield and >98% site selectivity. By switching the reagents involved, the present strategy may be extended to other classes of dicarbofunctionalization reactions. Mechanistic and computational investigations offer insights into the origin of the observed regiochemical outcome and the utility of the method is highlighted through the concise syntheses of biologically active molecules. The catalyst control principles reported are expected to advance efforts towards the development of general site-selective alkene functionalizations, removing the requirement for neighbouring activating groups.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The significance and challenges of designing a catalyst-controlled blueprint for olefin dicarbofunctionalization.
Fig. 2: Mechanistic rationale and reaction optimization.
Fig. 3: Mechanistic validation and application to complex molecule synthesis.

Data availability

All data supporting the findings of this study are available within the Article and its Supplementary Information. Crystallographic data for compound 4i have been deposited at the Cambridge Crystallographic Data Centre, under deposition number CCDC 2069191. Copies of the data can be obtained free of charge via

Change history


  1. Zhu, J., Wang, Q. & Wang, M. Multicomponent Reactions in Organic Synthesis (Wiley-VCH, 2015).

  2. Beller, M., Seayad, J., Tillack, A. & Jiao, H. Catalytic Markovnikov and anti-Markovnikov functionalization of alkenes and alkynes: recent developments and trends. Angew. Chem. Int. Ed. Engl. 43, 3368–3398 (2004).

    Article  CAS  Google Scholar 

  3. McDonald, R. I., Liu, G. & Stahl, S. S. Palladium(II)-catalyzed alkene functionalization via nucleopalladation: stereochemical pathways and enantioselective catalytic applications. Chem. Rev. 111, 2981–3019 (2011).

    Article  CAS  Google Scholar 

  4. Egami, H. & Sodeoka, M. Trifluoromethylation of alkenes with concomitant introduction of additional functional groups. Angew. Chem. Int. Ed. Engl. 53, 8294–8308 (2014).

    Article  CAS  Google Scholar 

  5. Yin, G., Mu, X. & Liu, G. Palladium(II)-catalyzed oxidative difunctionalization of alkenes: bond forming at a high-valent palladium center. Acc. Chem. Res. 49, 2413–2423 (2016).

    Article  CAS  Google Scholar 

  6. Zhang, J.-S., Liu, L., Chen, T. & Han, L.-B. Transition-metal-catalyzed three-component difunctionalizations of alkenes. Chem. Asian J. 13, 2277–2291 (2018).

    Article  CAS  Google Scholar 

  7. Qin, T. et al. A general alkyl-alkyl cross-coupling enabled by redox-active esters and alkylzinc reagents. Science 352, 801–805 (2016).

    Article  CAS  Google Scholar 

  8. Zhang, L. et al. Catalytic conjunctive cross-coupling enabled by metal-induced metallate rearrangement. Science 351, 70–74 (2016).

    Article  CAS  Google Scholar 

  9. Geist, E., Kirschning, A. & Schmidt, T. sp3-sp3 Coupling reactions in the synthesis of natural products and biologically active molecules. Nat. Prod. Rep. 31, 441–448 (2014).

    Article  CAS  Google Scholar 

  10. Lovering, F., Bikker, J. & Humblet, C. Escape from flatland: increasing saturation as an approach to improving clinical success. J. Med. Chem. 52, 6752–6756 (2009).

    Article  CAS  Google Scholar 

  11. KC, S. et al. Ni-catalyzed regioselective alkylarylation of vinylarenes via C(sp3)-C(sp3)/C(sp3)-C(sp2) bond formation and mechanistic studies. J. Am. Chem. Soc. 140, 9801–9805 (2018).

    Article  CAS  Google Scholar 

  12. Yang, T. et al. On the nature of C(sp3)-C(sp2) bond formation in nickel-catalyzed tertiary radical cross-couplings: a case study of Ni/photoredox catalytic cross-coupling of alkyl radicals and aryl halides. J. Am. Chem. Soc. 142, 21410–21419 (2020).

    Article  CAS  Google Scholar 

  13. Giri, R. & KC, S. Strategies toward dicarbofunctionalization of unactivated olefins by combined Heck carbometalation and cross-coupling. J. Org. Chem. 83, 3013–3022 (2018).

    Article  CAS  Google Scholar 

  14. Derosa, J., Apolinar, O., Kang, T., Tran, V. T. & Engle, K. M. Recent development in nickel-catalyzed intermolecular dicarbofunctionalization of alkenes. Chem. Sci. 11, 4287–4296 (2020).

    Article  CAS  Google Scholar 

  15. Qi, X. & Diao, T. Nickel-catalyzed dicarbofunctionalization of alkenes. ACS Catal. 10, 8542–8556 (2020).

    Article  CAS  Google Scholar 

  16. Lin, C. & Shen, L. Recent progress in transition metal-catalyzed regioselective functionalization of unactivated alkenes/alkynes assisted by bidentate directing groups. ChemCatChem 11, 961–968 (2019).

    Article  CAS  Google Scholar 

  17. Derosa, J., Tran, V. T., Boulous, M. N., Chen, J. S. & Engle, K. M. Nickel-catalyzed β,γ-dicarbofunctionalization of alkenyl carbonyl compounds via conjunctive cross-coupling. J. Am. Chem. Soc. 139, 10657–10660 (2017).

    Article  CAS  Google Scholar 

  18. Derosa, J. et al. Nickel-catalyzed 1,2-diarylation of simple alkenyl amides. J. Am. Chem. Soc. 140, 17878–17883 (2018).

    Article  CAS  Google Scholar 

  19. Basnet, P. et al. Synergistic bimetallic Ni/Ag and Ni/Cu catalysis for regioselective γ,δ-diarylation of alkenyl ketimines: addressing β-H elimination by in situ generation of cationic Ni(II) catalysts. J. Am. Chem. Soc. 140, 15586–15590 (2018).

    Article  CAS  Google Scholar 

  20. Derosa, J. et al. Nickel-catalyzed 1,2-diarylation of alkenyl carboxylates: a gateway to 1,2,3-trifunctionalized building blocks. Angew. Chem. Int. Ed. Engl. 59, 1201–1205 (2020).

    Article  CAS  Google Scholar 

  21. Tu, H.-Y., Zhu, S., Qing, F.-L. & Chu, L. Recent advances in nickel-catalyzed three-component difunctionalization of unactivated alkenes. Synthesis 52, 1346–1356 (2020).

    Article  CAS  Google Scholar 

  22. Rousseau, G. & Breit, B. Removable directing groups in organic synthesis and catalysis. Angew. Chem. Int. Ed. Engl. 50, 2450–2494 (2011).

    Article  CAS  Google Scholar 

  23. Xia, Y. & Dong, G. Temporary or removable directing groups enable activation of unstrained C–C bonds. Nat. Rev. Chem. 4, 600–614 (2020).

    Article  CAS  Google Scholar 

  24. Shrestha, B. et al. Ni-catalyzed regioselective 1,2-dicarbofunctionalization of olefins by intercepting Heck intermediates as imine-stabilized transient metallacycles. J. Am. Chem. Soc. 139, 10653–10656 (2017).

    Article  CAS  Google Scholar 

  25. Barber, E. R. et al. Nickel-catalyzed hydroarylation of alkynes under reductive conditions with aryl bromides and water. J. Org. Chem. 84, 11612–11622 (2019).

    Article  CAS  Google Scholar 

  26. Lin, C.-Y. & Power, P. P. Complexes of Ni(I): a “rare” oxidation state of growing importance. Chem. Soc. Rev. 46, 5347–5399 (2017).

    Article  CAS  Google Scholar 

  27. Dible, B. R., Sigman, M. S. & Arif, A. M. Oxygen-induced ligand dehydrogenation of a planar bis-μ-chloronickel(I) dimer featuring an NHC ligand. Inorg. Chem. 44, 3774–3776 (2005).

    Article  CAS  Google Scholar 

  28. Zou, G. & Louie, J. Highly active nickel catalysts for the isomerization of unactivated vinyl cyclopropanes to cyclopentenes. Angew. Chem. Int. Ed. Engl. 43, 2277–2279 (2004).

    Article  Google Scholar 

  29. Hudlicky, T. & Reed, J. W. From discovery to application: 50 years of the vinylcyclopropane-cyclopentene rearrangement and its impact on the synthesis of natural products. Angew. Chem. Int. Ed. Engl. 49, 4864–4876 (2010).

    Article  CAS  Google Scholar 

  30. Sun, S.-Z., Bröjesson, M., Martin-Montero, R. & Martin, R. Site-selective Ni-catalyzed reductive coupling of α-haloboranes with unactivated olefins. J. Am. Chem. Soc. 140, 12765–12769 (2018).

    Article  CAS  Google Scholar 

  31. Xiao, L.-J. et al. Nickel(0)-catalyzed hydroarylation of styrenes and 1,3-dienes with organoboron compounds. Angew. Chem. Int. Ed. Engl. 57, 461–464 (2018).

    Article  CAS  Google Scholar 

  32. Buffat, M. G. P. Synthesis of piperidines. Tetrahedron 60, 1701–1729 (2004).

    Article  CAS  Google Scholar 

  33. Nájera, C., Beletskaya, I. P. & Yus, M. Metal-catalyzed regiodivergent organic reactions. Chem. Soc. Rev. 48, 4515–4618 (2019).

    Article  Google Scholar 

  34. Matsubara, K. et al. Dinuclear systems in the efficient nickel-catalyzed Kumada–Tamao–Corriu cross-coupling of aryl halides. Organometallics 36, 255–265 (2017).

    Article  CAS  Google Scholar 

  35. Kapat, A., Sperger, T., Guven, S. & Schoenebeck, F. E-Olefins through intramolecular radical relocation. Science 363, 391–396 (2019).

    Article  CAS  Google Scholar 

  36. Fang, W. K. & Chow, K. Amino diol derivatives as sphingosine 1-phosphate (S1P) receptor modulators. US patent 2014/0221498 A1 (2014).

  37. Aoki, T. et al. Substituted cyclic amine compound, production process thereof and pharmaceutical composition for circulatory organ use containing the same. US patent 5728835A (1998).

  38. Wilhelm, A. et al. Phenalkylamine derivatives, pharmaceutical compositions containing them, and their use in therapy. WO patent 2012/020130 A1 (2012).

  39. Brandi, A., Cicchi, S. & Cordero, F. M. Novel synthesis of azetidines and azetidinones. Chem. Rev. 108, 3988–4035 (2008).

    Article  CAS  Google Scholar 

Download references


This research was supported by the National University of Singapore Academic Research Fund Tier 1: R-143-000-B57-114 (M.J.K.) and by the National Institutes of Health R35GM137797 (O.G.). O.G. is grateful to the MARCC/BlueCrab HPC clusters and XSEDE (CHE160082 and CHE160053) for computational resources. We thank G. K. Tan for X-ray crystallographic analysis.

Author information

Authors and Affiliations



H.W. and C.-F.L. synthesized the Ni-based complexes and developed the catalytic method. R.T.M. carried out the DFT calculations. O.G. directed the DFT studies. M.J.K. directed the investigations and wrote the manuscript with revisions provided by the other authors.

Corresponding authors

Correspondence to Osvaldo Gutierrez or Ming Joo Koh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–8, Figs. 1–5, experimental data, synthesis and characterization data, NMR spectra, X-ray crystallographic data, DFT calculation data and references.

Supplementary Data 1

Crystallographic data for compound 4i; CCDC reference 2069191.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Liu, CF., Martin, R.T. et al. Directing-group-free catalytic dicarbofunctionalization of unactivated alkenes. Nat. Chem. 14, 188–195 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing