Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Arene radiofluorination enabled by photoredox-mediated halide interconversion

Abstract

Positron emission tomography (PET) is a powerful imaging technology that can visualize and measure metabolic processes in vivo and/or obtain unique information about drug candidates. The identification of new and improved molecular probes plays a critical role in PET, but its progress is somewhat limited due to the lack of efficient and simple labelling methods to modify biologically active small molecules and/or drugs. Current methods to radiofluorinate unactivated arenes are still relatively limited, especially in a simple and site-selective way. Here we disclose a method for constructing Cā€“18F bonds through direct halide/18F conversion in electron-rich halo(hetero)arenes. [18F]Fāˆ’ is introduced into a broad spectrum of readily available aryl halide precursors in a site-selective manner under mild photoredox conditions. Notably, our direct 19F/18F exchange method enables rapid PET probe diversification through the preparation and evaluation of an [18F]-labelled O-methyl tyrosine library. This strategy also results in the high-yielding synthesis of the widely used PET agent l-[18F]FDOPA from a readily available l-FDOPA analogue.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Nucleophilic arene 18F-fluorination.
Fig. 2: Chemo- and regioselectivity study of photoredox-mediated aryl halide/18F interconversion.
Fig. 3: Radiofluorination of potential bioactive compounds through halide/18F interconversion.
Fig. 4: Exploration of 18F-labelled O-methyl tyrosines as PET agents in an MCF-7 tumour model.
Fig. 5: Synthesis of [18F]FDOPA.

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this Article (and its Supplementary Information files). The PET imaging data of the animal study have been deposited to the public repository Zenodo61.

References

  1. Ametamey, S. M., Honer, M. & Schubiger, P. A. Molecular imaging with PET. Chem. Rev. 108, 1501ā€“1516 (2008).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  2. Pike, V. W. PET radiotracers: crossing the blood-brain barrier and surviving metabolism. Trends Pharmacol. Sci. 30, 431ā€“440 (2009).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  3. Deng, X. Y. et al. Chemistry for positron emission tomography: recent advances in 11C-, 18F-, 13N- and 15O-labeling reactions. Angew. Chem. Int. Ed. 58, 2580ā€“2605 (2019).

    ArticleĀ  CASĀ  Google ScholarĀ 

  4. Aldeghi, M., Malhotra, S., Selwood, D. L. & Chan, A. W. Two- and three-dimensional rings in drugs. Chem. Biol. Drug Des. 83, 450ā€“461 (2014).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  5. Taylor, R. D., MacCoss, M. & Lawson, A. D. Rings in drugs. J. Med. Chem. 57, 5845ā€“5859 (2014).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  6. Meanwell, N. A. Fluorine and fluorinated motifs in the design and application of bioisosteres for drug design. J. Med. Chem. 61, 5822ā€“5880 (2018).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  7. Zhou, Y. et al. Next generation of fluorine-containing pharmaceuticals, compounds currently in phase IIā€“III clinical trials of major pharmaceutical companies: new structural trends and therapeutic areas. Chem. Rev. 116, 422ā€“518 (2016).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  8. Jacobson, O., Kiesewetter, D. O. & Chen, X. Y. Fluorine-18 radiochemistry, labeling strategies and synthetic routes. Bioconjug. Chem. 26, 1ā€“18 (2015).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  9. Preshlock, S., Tredwell, M. & Gouverneur, V. 18F-Labeling of arenes and heteroarenes for applications in positron emission tomography. Chem. Rev. 116, 719ā€“766 (2016).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  10. van der Born, D. et al. Fluorine-18 labelled building blocks for PET tracer synthesis. Chem. Soc. Rev. 46, 4709ā€“4773 (2017).

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  11. Krishnan, H. S., Ma, L. L., Vasdev, N. & Liang, S. H. 18F-Labeling of sensitive biomolecules for positron emission tomography. Chem. Eur. J. 23, 15553ā€“15577 (2017).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  12. Ding, Y. S. et al. Synthesis of high specific activity 6-[18F]fluorodopamine for positron emission tomography studies of sympathetic nervous-tissue. J. Med. Chem. 34, 861ā€“863 (1991).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  13. Cai, L. S., Lu, S. Y. & Pike, V. W. Chemistry with [18F]fluoride ion. Eur. J. Org. Chem. 2008, 2853ā€“2873 (2008).

    ArticleĀ  Google ScholarĀ 

  14. Cole, E. L., Stewart, M. N., Littich, R., Hoareau, R. & Scott, P. J. H. Radiosyntheses using fluorine-18: the art and science of late stage fluorination. Curr. Top. Med. Chem. 14, 875ā€“900 (2014).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  15. Adams, D. J. & Clark, J. H. Nucleophilic routes to selectively fluorinated aromatics. Chem. Soc. Rev. 28, 225ā€“231 (1999).

    ArticleĀ  CASĀ  Google ScholarĀ 

  16. Brooks, A. F., Topczewski, J. J., Ichiishi, N., Sanford, M. S. & Scott, P. J. Late-stage [18F]fluorination: new solutions to old problems. Chem. Sci. 5, 4545ā€“4553 (2014).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  17. Lee, E. et al. A fluoride-derived electrophilic late-stage fluorination reagent for PET imaging. Science 334, 639ā€“642 (2011).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  18. Lee, E., Hooker, J. M. & Ritter, T. Nickel-mediated oxidative fluorination for PET with aqueous [18F] fluoride. J. Am. Chem. Soc. 134, 17456ā€“17458 (2012).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  19. Tredwell, M. et al. A general copper-mediated nucleophilic 18F fluorination of arenes. Angew. Chem. Int. Ed. 53, 7751ā€“7755 (2014).

    ArticleĀ  CASĀ  Google ScholarĀ 

  20. Taylor, N. J. et al. Derisking the Cu-mediated 18F-fluorination of heterocyclic positron emission tomography radioligands. J. Am. Chem. Soc. 139, 8267ā€“8276 (2017).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  21. Guibbal, F. et al. Manual and automated Cu-mediated radiosynthesis of the PARP inhibitor [18F]olaparib. Nat. Protoc. 15, 1525ā€“1541 (2020).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  22. Chun, J. H., Lu, S. Y., Lee, Y. S. & Pike, V. W. Fast and high-yield microreactor syntheses of ortho-substituted [18F]fluoroarenes from reactions of [18F]fluoride ion with diaryliodonium salts.J. Org. Chem. 75, 3332ā€“3338 (2010).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  23. Ichiishi, N. et al. Copper-catalyzed [18F]fluorination of (mesityl)(aryl)iodonium salts. Org. Lett. 16, 3224ā€“3227 (2014).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  24. Mossine, A. V. et al. Synthesis of [18F]arenes via the copper-mediated [18F]fluorination of boronic acids. Org. Lett. 17, 5780ā€“5783 (2015).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  25. Makaravage, K. J., Brooks, A. F., Mossine, A. V., Sanford, M. S. & Scott, P. J. H. Copper-mediated radiofluorination of arylstannanes with [18F]KF. Org. Lett. 18, 5440ā€“5443 (2016).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  26. McCammant, M. S. et al. Cu-mediated Cā€“H 18F-fluorination of electron-rich (hetero)arenes. Org. Lett. 19, 3939ā€“3942 (2017).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  27. Rotstein, B. H., Stephenson, N. A., Vasdev, N. & Liang, S. H. Spirocyclic hypervalent iodine(III)-mediated radiofluorination of non-activated and hindered aromatics. Nat. Commun. 5, 4365 (2014).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  28. Liang, S. H., Wang, L., Stephenson, N. A., Rotstein, B. H. & Vasdev, N. Facile 18F labeling of non-activated arenes via a spirocyclic iodonium(III) ylide method and its application in the synthesis of the mGluR5 PET radiopharmaceutical [18F] FPEB. Nat. Protoc. 14, 1530ā€“1545 (2019).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  29. Gendron, T. et al. Ring-closing synthesis of dibenzothiophene sulfonium salts and their use as leaving groups for aromatic 18F-fluorination. J. Am. Chem. Soc. 140, 11125ā€“11132 (2018).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  30. Neumann, C. N., Hooker, J. M. & Ritter, T. Concerted nucleophilic aromatic substitution with 19Fāˆ’ and 18Fāˆ’. Nature 534, 369ā€“373 (2016).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  31. Xu, P. et al. Site-selective late-stage aromatic [18F]fluorination via aryl sulfonium salts. Angew. Chem. Int. Ed. 59, 1956ā€“1960 (2020).

    ArticleĀ  CASĀ  Google ScholarĀ 

  32. Tay, N. E. S. et al. 19F- and 18F-arene deoxyfluorination via organic photoredox-catalysed polarity-reversed nucleophilic aromatic substitution. Nat. Catal. 3, 734ā€“742 (2020).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  33. Hoover, A. J. et al. A transmetalation reaction enables the synthesis of [18F]5-fluorouracil from [18F]fluoride for human PET imaging. Organometallics 35, 1008ā€“1014 (2016).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  34. Sharninghausen, L. S. et al. NHC-copper mediated ligand-directed radiofluorination of aryl halides. J. Am. Chem. Soc. 142, 7362ā€“7367 (2020).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  35. Fang, W. Y. et al. Synthetic approaches and pharmaceutical applications of chloro-containing molecules for drug discovery: a critical review. Eur. J. Med. Chem. 173, 117ā€“153 (2019).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  36. Langer, O. et al. Synthesis of fluorine-18-labeled ciprofloxacin for PET studies in humans. Nucl. Med. Biol. 30, 285ā€“291 (2003).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  37. Rokka, J. et al. 19F/18F exchange synthesis for a novel [18F]S1P3-radiopharmaceutical. J. Labelled Compd Radiopharm. 56, 385ā€“391 (2013).

    ArticleĀ  CASĀ  Google ScholarĀ 

  38. Chen, W. et al. Direct arene Cā€“H fluorination with 18Fāˆ’ via organic photoredox catalysis. Science 364, 1170ā€“1174 (2019).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  39. Zweig, A., Hodgson, W. G. & Jura, W. H. The oxidation of methoxybenzenes. J. Am. Chem. Soc. 86, 4124ā€“4129 (1964).

    ArticleĀ  CASĀ  Google ScholarĀ 

  40. Blom, E., Karimi, F. & Langstrom, B. [18F]/19F exchange in fluorine containing compounds for potential use in 18F-labelling strategies. J. Labelled Compd Radiopharm. 52, 504ā€“511 (2009).

    ArticleĀ  CASĀ  Google ScholarĀ 

  41. Wagner, F. M., Ermert, J. & Coenen, H. H. Three-step, ā€˜one-potā€™ radiosynthesis of 6-fluoro-3,4-dihydroxy-l-phenylalanine by isotopic exchange. J. Nucl. Med. 50, 1724ā€“1729 (2009).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  42. Weiss, P. S., Ermert, J., Melean, J. C., Schafer, D. & Coenen, H. H. Radiosynthesis of 4-[18F]fluoro-l-tryptophan by isotopic exchange on carbonyl-activated precursors. Bioorg. Med. Chem. 23, 5856ā€“5869 (2015).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  43. Tay, N. E. S. & Nicewicz, D. A. Cation radical accelerated nucleophilic aromatic substitution via organic photoredox catalysis. J. Am. Chem. Soc. 139, 16100ā€“16104 (2017).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  44. Holmberg-Douglas, N. & Nicewicz, D. A. Arene cyanation via cation-radical accelerated-nucleophilic aromatic substitution. Org. Lett. 21, 7114ā€“7118 (2019).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  45. Venditto, N. J. & Nicewicz, D. A. Cation radical-accelerated nucleophilic aromatic substitution for amination of alkoxyarenes. Org. Lett. 22, 4817ā€“4822 (2020).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  46. Shewchuk, L. et al. Binding mode of the 4-anilinoquinazoline class of protein kinase inhibitor: X-ray crystallographic studies of 4-anilinoquinazolines bound to cyclin-dependent kinase 2 and p38 kinase. J. Med. Chem. 43, 133ā€“138 (2000).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  47. Werry, E. L. et al. Recent developments in TSPO PET imaging as a biomarker of neuroinflammation in neurodegenerative disorders. Int. J. Mol. Sci. 20, 3161 (2019).

    ArticleĀ  CASĀ  PubMed CentralĀ  Google ScholarĀ 

  48. Wang, Q. & Holst, J. L-type amino acid transport and cancer: targeting the mTORC1 pathway to inhibit neoplasia. Am. J. Cancer Res. 5, 1281ā€“1294 (2015).

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  49. Qi, Y. Q., Liu, X. H., Li, J., Yao, H. Q. & Yuan, S. H. Fluorine-18 labeled amino acids for tumor PET/CT imaging. Oncotarget 8, 60581ā€“60588 (2017).

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  50. Kuchar, M. & Mamat, C. Methods to increase the metabolic stability of 18F-radiotracers. Molecules 20, 16186ā€“16220 (2015).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  51. Lee, S. L. Radioactive iodine therapy. Curr. Opin. Endocrinol. Diabetes Obes. 19, 420ā€“428 (2012).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  52. Barth, R. F., Mi, P. & Yang, W. Boron delivery agents for neutron capture therapy of cancer. Cancer Commun. 38, 35 (2018).

    ArticleĀ  Google ScholarĀ 

  53. Garnett, E. S., Firnau, G. & Nahmias, C. Dopamine visualized in the basal ganglia of living man. Nature 305, 137ā€“138 (1983).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  54. Pretze, M., WƤngler, C. & WƤngler, B. 6-[18F]fluoro-L-DOPA: a well-established neurotracer with expanding application spectrum and strongly improved radiosyntheses. BioMed. Res. Int. 2014, e674063 (2014).

    ArticleĀ  Google ScholarĀ 

  55. Libert, L. C. et al. Production at the Curie level of no-carrier-added 6-18F-fluoro-l-DOPA. J. Nucl. Med. 54, 1154ā€“1161 (2013).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  56. Luurtsema, G. et al. Improved GMP-compliant multi-dose production and quality control of 6-[18F]fluoro-l-DOPA. EJNMMI Radiopharm. Chem. 1, 7 (2017).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  57. Mossine, A. V. et al. Synthesis of high-molar-activity [18F]6-fluoro-l-DOPA suitable for human use via Cu-mediated fluorination of a BPin precursor. Nat. Protoc. 15, 1742ā€“1759 (2020).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  58. Orlovskaya, V., Fedorova, O., Kuznetsova, O. & Krasikova, R. Cu-mediated radiofluorination of aryl pinacolboronate esters: alcohols as solvents with application to 6-l-[18F]FDOPA synthesis. Eur. J. Org. Chem. 2020, 7079ā€“7086 (2020).

    ArticleĀ  CASĀ  Google ScholarĀ 

  59. Krasikova, R. N. Nucleophilic synthesis of 6-l-[18F]FDOPA. Is copper-mediated radiofluorination the answer? Molecules 25, 4365 (2020).

    ArticleĀ  CASĀ  PubMed CentralĀ  Google ScholarĀ 

  60. Luxen, A. et al. Production of 6-[18F]fluoro-l-DOPA and its metabolism in vivoā€”a critical-review. Int. J. Rad. Appl. Instrum. B 19, 149ā€“158 (1992).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  61. Chen, W. et al. Arene Radiofluorination Enabled by Photoredox-Mediated Halide Interconversion (Zenodo, 2021); https://doi.org/10.5281/zenodo.5220725

Download references

Acknowledgements

This work was supported in part by the National Institutes of Health (NIBIB) grants R01EB029451 (Z.L. and D.A.N.) and 5R01CA233904 (Z.L.), UNC LCCC pilot grant (Z.L. and D.A.N.), grant 1S10OD023611 (Z.L.) and the startup fund from UNC Department of Radiology, Biomedical Research Imaging Center, and UNC Lineberger Comprehensive Cancer Center (Z.L.). N.E.S.T. and V.A.P are grateful for NSF Graduate Research Fellowships. We thank G. T. Bida for assistance with cyclotron operation, X. Wu for NMR data collection and the University of North Carolinaā€™s Department of Chemistry Mass Spectrometry Core Laboratory, especially D. Weatherspoon, for their assistance with mass spectrometry analysis.

Author information

Authors and Affiliations

Authors

Contributions

W.C. originated the halides/18F conversion project, prepared the substrates and 19F-standards and performed the radiolabelling reactions. H.W. conducted the animal imaging studies and performed PET imaging data collection and analysis. N.E.S.T. was involved in the discovery of the 19F/18F exchange reaction. V.A.P. and K.-P.L. assisted in the synthesis and analysis of substrates. T.Z. assisted in the animal studies. Z.W. contributed to the initial discussion. D.A.N. and Z.L. conceived and supervised the project and experiments. W.C., D.A.N. and Z.L. wrote the manuscript. N.E.S.T. and V.A.P. assisted in editing the manuscript.

Corresponding authors

Correspondence to David A. Nicewicz or Zibo Li.

Ethics declarations

Competing interests

The authors Z.L., D.A.N. and W.C. have filed a WO patent (patent applicant, The University of North Carolina at Chapel Hill, USA; inventors, Z. Li, D. Nicewicz and W. Chen; patent no. WO 2020176804) related to the labelling methodology in this manuscript and is under review. The remaining authors declare no competing interests.

Additional information

Peer review information Nature Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisherā€™s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Information

Substrates and standards preparation, general experiment procedures, Supplementary Figs. 1ā€“140, Tables 1ā€“83 and NMR spectra.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Wang, H., Tay, N.E.S. et al. Arene radiofluorination enabled by photoredox-mediated halide interconversion. Nat. Chem. 14, 216ā€“223 (2022). https://doi.org/10.1038/s41557-021-00835-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-021-00835-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter ā€” what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing