Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A mating mechanism to generate diversity for the Darwinian selection of DNA-encoded synthetic molecules

Abstract

DNA-encoded library technologies enable the screening of synthetic molecules but have thus far not tapped into the power of Darwinian selection with iterative cycles of selection, amplification and diversification. Here we report a simple strategy to rapidly assemble libraries of conformationally constrained peptides that are paired in a combinatorial fashion (suprabodies). We demonstrate that the pairing can be shuffled after each amplification cycle in a process similar to DNA shuffling or mating to regenerate diversity. Using simulations, we show the benefits of this recombination in yielding a more accurate correlation of selection fitness with affinity after multiple rounds of selection, particularly if the starting library is heterogeneous in the concentration of its members. The method was validated with selections against streptavidin and applied to the discovery of PD-L1 binders. We further demonstrate that the binding of self-assembled suprabodies can be recapitulated by smaller (7 kDa) synthetic products that maintain the conformational constraint of the peptides.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Darwinian evolution by selection/amplification/diversification, Dsuprabody and Psuprabody assemblies, and a general selection-protocol scheme.
Fig. 2: Scheme of PNA–peptide conjugate DNA-templated peptide ligation amenable to suprabody library generation.
Fig. 3: DSuprabody generation.
Fig. 4: Streptavidin selection with the 108-member library.
Fig. 5: PD-L1 selection with a focused library.
Fig. 6: PD-L1 selection with the 108-member library.
Fig. 7: Simulation of selection with or without recombination.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within this paper and its Supplementary Information. Raw data has been deposited on Zenodo (https://doi.org/10.5281/zenodo.5011513). Source data are provided with this paper.

References

  1. Neri, D. & Lerner, R. A. DNA-encoded chemical libraries: a selection system based on endowing organic compounds with amplifiable information. Annu. Rev. Biochem. 87, 479–502 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Goodnow, R. A., Dumelin, C. E. & Keefe, A. D. DNA-encoded chemistry: enabling the deeper sampling of chemical space. Nat. Rev. Drug Discov. 16, 131–147 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Brenner, S. & Lerner, R. A. Encoded combinatorial chemistry. Proc. Natl Acad. Sci. USA 89, 5381–5383 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gartner, Z. J. et al. DNA-templated organic synthesis and selection of a library of macrocycles. Science 305, 1601–1605 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Georghiou, G., Kleiner, R. E., Pulkoski-Gross, M., Liu, D. R. & Seeliger, M. A. Highly specific, bisubstrate-competitive Src inhibitors from DNA-templated macrocycles. Nat. Chem. Biol. 8, 366–374 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Harris, J. L. & Winssinger, N. PNA encoding (PNA = peptide nucleic acid): from solution-based libraries to organized microarrays. Chem. Eur. J. 11, 6792–6801 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Zambaldo, C., Barluenga, S. & Winssinger, N. PNA-encoded chemical libraries. Curr. Opin. Chem. Biol. 26, 8–15 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Wrenn, S. J., Weisinger, R. M., Halpin, D. R. & Harbury, P. B. Synthetic ligands discovered by in vitro selection. J. Am. Chem. Soc. 129, 13137–13143 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Weisinger, R. M., Wrenn, S. J. & Harbury, P. B. Highly parallel translation of DNA sequences into small molecules. PLoS ONE 7, e28056 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Melkko, S., Scheuermann, J., Dumelin, C. E. & Neri, D. Encoded self-assembling chemical libraries. Nat. Biotechnol. 22, 568–574 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Mannocci, L. et al. High-throughput sequencing allows the identification of binding molecules isolated from DNA-encoded chemical libraries. Proc. Natl Acad. Sci. USA 105, 17670–17675 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Clark, M. A. et al. Design, synthesis and selection of DNA-encoded small-molecule libraries. Nat. Chem. Biol. 5, 647–654 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Daguer, J. P., Ciobanu, M., Alvarez, S., Barluenga, S. & Winssinger, N. DNA-templated combinatorial assembly of small molecule fragments amenable to selection/amplification cycles. Chem. Sci. 2, 625–632 (2011).

    Article  CAS  Google Scholar 

  14. Ciobanu, M. et al. Selection of a synthetic glycan oligomer from a library of DNA-templated fragments against DC-SIGN and inhibition of HIV gp120 binding to dendritic cells. Chem. Commun. 47, 9321–9323 (2011).

    Article  CAS  Google Scholar 

  15. Hook, K. D., Chambers, J. T. & Hili, R. A platform for high-throughput screening of DNA-encoded catalyst libraries in organic solvents. Chem. Sci. 8, 7072–7076 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Usanov, D. L., Chan, A. I., Maianti, J. P. & Liu, D. R. Second-generation DNA-templated macrocycle libraries for the discovery of bioactive small molecules. Nat. Chem. 10, 704–714 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Brudno, Y., Birnbaum, M. E., Kleiner, R. E. & Liu, D. R. An in vitro translation, selection and amplification system for peptide nucleic acids. Nat. Chem. Biol. 6, 148–155 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Niu, J., Hili, R. & Liu, D. R. Enzyme-free translation of DNA into sequence-defined synthetic polymers structurally unrelated to nucleic acids. Nat. Chem. 5, 282–292 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Krusemark, C. J., Tilmans, N. P., Brown, P. O. & Harbury, P. B. Directed chemical evolution with an outsized genetic code. PLoS ONE 11, e0154765 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kong, D. H., Yeung, W. & Hili, R. In vitro selection of diversely functionalized aptamers. J. Am. Chem. Soc. 139, 13977–13980 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Chen, Z., Lichtor, P. A., Berliner, A. P., Chen, J. C. & Liu, D. R. Evolution of sequence-defined highly functionalized nucleic acid polymers. Nat. Chem. 10, 420–427 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Stemmer, W. P. C. Rapid evolution of a protein in-vitro by DNA shuffling. Nature 370, 389–391 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. Crameri, A., Raillard, S. A., Bermudez, E. & Stemmer, W. P. C. DNA shuffling of a family of genes from diverse species accelerates directed evolution. Nature 391, 288–291 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Smith, G. P. Applied evolution—the progeny of sexual PCR. Nature 370, 324–325 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. Melkko, S., Zhang, Y., Dumelin, C. E., Scheuermann, J. & Neri, D. Isolation of high-affinity trypsin inhibitors from a DNA-encoded chemical library. Angew. Chem. Int. Ed. 46, 4671–4674 (2007).

    Article  CAS  Google Scholar 

  26. Wichert, M. et al. Dual-display of small molecules enables the discovery of ligand pairs and facilitates affinity maturation. Nat. Chem. 7, 241–249 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Li, G. et al. Design, preparation, and selection of DNA-encoded dynamic libraries. Chem. Sci. 6, 7097–7104 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zimmermann, G. et al. A specific and covalent JNK-1 ligand selected from an encoded self-assembling chemical library. Chem. Eur. J. 23, 8152–8155 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. Zhou, Y. et al. DNA-encoded dynamic chemical library and its applications in ligand discovery. J. Am. Chem. Soc. 140, 15859–15867 (2018).

    Article  CAS  PubMed  Google Scholar 

  30. Reddavide, F. V. et al. Second generation DNA-encoded dynamic combinatorial chemical libraries. Chem. Commun. 55, 3753–3756 (2019).

    Article  CAS  Google Scholar 

  31. Figuerola-Conchas, A. et al. Small-molecule modulators of the ATPase VCP/p97 affect specific p97 cellular functions. ACS Chem. Biol. 15, 243–253 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Deng, Y. Q. et al. Selection of DNA-encoded dynamic chemical libraries for direct inhibitor discovery. Angew. Chem. Int. Ed. 59, 14965–14972 (2020).

    Article  CAS  Google Scholar 

  33. Driggers, E. M., Hale, S. P., Lee, J. & Terrett, N. K. The exploration of macrocycles for drug discovery—an underexploited structural class. Nat. Rev. Drug Discov. 7, 608–624 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Zorzi, A., Deyle, K. & Heinis, C. Cyclic peptide therapeutics: past, present and future. Curr. Opin. Chem. Biol. 38, 24–29 (2017).

    Article  CAS  PubMed  Google Scholar 

  35. Li, Y. Z. et al. Versatile protein recognition by the encoded display of multiple chemical elements on a constant macrocyclic scaffold. Nat. Chem. 10, 441–448 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tan, X., Bruchez, M. P. & Armitage, B. A. Closing the loop: constraining TAT peptide by γPNA hairpin for enhanced cellular delivery of biomolecules. Bioconjug. Chem. 29, 2892–2898 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. Machida, T., Dutt, S. & Winssinger, N. Allosterically regulated phosphatase activity from peptide–PNA conjugates folded through hybridization. Angew. Chem. Int. Ed. 55, 8595–8598 (2016).

    Article  CAS  Google Scholar 

  38. Barluenga, S. & Winssinger, N. PNA as a biosupramolecular tag for programmable assemblies and reactions. Accounts Chem Res 48, 1319–1331 (2015).

    Article  CAS  Google Scholar 

  39. Li, X. Y. & Liu, D. R. DNA-templated organic synthesis: nature’s strategy for controlling chemical reactivity applied to synthetic molecules. Angew. Chem. Int. Ed. 43, 4848–4870 (2004).

    Article  CAS  Google Scholar 

  40. Berteotti, A. et al. Predicting the reactivity of nitrile-carrying compounds with cysteine: a combined computational and experimental study. ACS Med. Chem. Lett. 5, 501–505 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ramil, C. P., An, P., Yu, Z. & Lin, Q. Sequence-specific 2-cyanobenzothiazole ligation. J. Am. Chem. Soc. 138, 5499–5502 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nitsche, C. et al. Biocompatible macrocyclization between cysteine and 2-cyanopyridine generates stable peptide inhibitors. Org. Lett. 21, 4709–4712 (2019).

    Article  CAS  PubMed  Google Scholar 

  43. Todorovic, M. et al. Fluorescent isoindole crosslink (FlICk) chemistry: a rapid, user-friendly stapling reaction. Angew. Chem. Int. Ed. 58, 14120–14124 (2019).

    Article  CAS  Google Scholar 

  44. Zhang, Y., Zhang, Q., Wong, C. T. T. & Li, X. C. Chemoselective peptide cyclization and bicyclization directly on unprotected peptides. J. Am. Chem. Soc. 141, 12274–12279 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. Schmidt, T. G. M., Koepke, J., Frank, R. & Skerra, A. Molecular interaction between the Strep-tag affinity peptide and its cognate target, streptavidin. J. Mol. Biol. 255, 753–766 (1996).

    Article  CAS  PubMed  Google Scholar 

  46. Busby, M., Stadler, L. K. J., Ferrigno, P. K. & Davis, J. J. Optimisation of a multivalent Strep tag for protein detection. Biophys. Chem. 152, 170–177 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Freeman, G. J. et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J. Exp. Med. 192, 1027–1034 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zak, K. M. et al. Structure of the complex of human programmed death 1, PD-1, and its ligand PD-L1. Structure 23, 2341–2348 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Caldwell, C. et al. Identification and validation of a PD-L1 binding peptide for determination of PDL1 expression in tumors. Sci. Rep. 7, 13682 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Touti, F., Gates, Z. P., Bandyopdhyay, A., Lautrette, G. & Pentelute, B. L. In-solution enrichment identifies peptide inhibitors of protein–protein interactions. Nat. Chem. Biol. 15, 410–418 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Shaabani, S. et al. A patent review on PD-1/PD-L1 antagonists: small molecules, peptides, and macrocycles (2015–2018). Expert Opin. Ther. Pat. 28, 665–678 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Satz, A. L. DNA encoded library selections and insights provided by computational simulations. ACS Chem. Biol. 10, 2237–2245 (2015).

    Article  CAS  PubMed  Google Scholar 

  53. Satz, A. L., Hochstrasser, R. & Petersen, A. C. Analysis of current DNA encoded library screening data indicates higher false negative rates for numerically larger libraries. ACS Comb. Sci. 19, 234–238 (2017).

    Article  CAS  PubMed  Google Scholar 

  54. Smith, G. P. Filamentous fusion phage—novel expression vectors that display cloned antigens on the virion surface. Science 228, 1315–1317 (1985).

    Article  CAS  PubMed  Google Scholar 

  55. Ellington, A. D. & Szostak, J. W. Invitro selection of RNA Molecules that bind specific ligands. Nature 346, 818–822 (1990).

    Article  CAS  PubMed  Google Scholar 

  56. Tuerk, C. & Gold, L. Systematic evolution of ligands by exponential enrichment—RNA ligands to bacteriophage-T4 DNA-polymerase. Science 249, 505–510 (1990).

    Article  CAS  PubMed  Google Scholar 

  57. Roberts, R. W. & Szostak, J. W. RNA–peptide fusions for the in vitro selection of peptides and proteins. Proc. Natl Acad. Sci. USA 94, 12297–12302 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kale, S. S. et al. Cyclization of peptides with two chemical bridges affords large scaffold diversities. Nat. Chem. 10, 715–723 (2018).

    Article  CAS  PubMed  Google Scholar 

  59. Heinis, C., Rutherford, T., Freund, S. & Winter, G. Phage-encoded combinatorial chemical libraries based on bicyclic peptides. Nat. Chem. Biol. 5, 502–507 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Navaratna, T. et al. Directed evolution using stabilized bacterial peptide display. J. Am. Chem. Soc. 142, 1882–1894 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Huang, Y. C., Wiedmann, M. M. & Suga, H. RNA display methods for the discovery of bioactive macrocycles. Chem. Rev. 119, 10360–10391 (2019).

    Article  CAS  PubMed  Google Scholar 

  62. Lee, J. et al. Expanding the limits of the second genetic code with ribozymes. Nat. Commun. 10, 5097 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Vinogradov, A. A. et al. Minimal lactazole scaffold for in vitro thiopeptide bioengineering. Nat. Commun. 11, 2272 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Heinis, C. & Winter, G. Encoded libraries of chemically modified peptides. Curr. Opin. Chem. Biol. 26, 89–98 (2015).

    Article  CAS  PubMed  Google Scholar 

  65. Josephson, K., Ricardo, A. & Szostak, J. W. mRNA display: from basic principles to macrocycle drug discovery. Drug Discov. Today 19, 388–399 (2014).

    Article  CAS  PubMed  Google Scholar 

  66. Obexer, R., Walport, L. J. & Suga, H. Exploring sequence space: harnessing chemical and biological diversity towards new peptide leads. Curr. Opin. Chem. Biol. 38, 52–61 (2017).

    Article  CAS  PubMed  Google Scholar 

  67. Goto, Y., Katoh, T. & Suga, H. Flexizymes for genetic code reprogramming. Nat. Protoc. 6, 779–790 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by SNSF grants (169141 and 188406) and the NCCR chemical biology (185898). We thank V. Dutoit (Laboratory of Tumor Immunology, Faculty of Medicine, University of Geneva) for providing the U251 cell line.

Author information

Authors and Affiliations

Authors

Contributions

N.W. conceived the technology. B.R.V., L.F.-S., J-.P.D., S.B. and N.W. designed the experiments, analysed data and wrote the manuscript. B.R.V established and performed the selections. L.F.-S. established the chemical ligations. J.-P.D. designed the sequences of the library. B.R.V, L.F.-S. and M.D. synthesized and characterized the hits after selection.

Corresponding author

Correspondence to Nicolas Winssinger.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Chemistry thanks Ryan Hili, Thomas Kodadek, Alexander Satz and Yixin Zhang for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary information.

Reporting Summary

Supplementary Table 1

Mathematical simulations.

Source data

Source Data Fig. 2

Unprocessed gels for Fig. 2c.

Source Data Fig. 3

Unprocessed gels for Fig. 3a,b.

Source Data Fig. 4

Data for graphs in Fig. 4b–d.

Source Data Fig. 5

Data for graphs in Fig. 5c,e.

Source Data Fig. 6

Data for graphs in Fig. 6d–e.

Source Data Fig. 7

Data for graphs in Fig. 7a–c,e,f.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vummidi, B.R., Farrera-Soler, L., Daguer, JP. et al. A mating mechanism to generate diversity for the Darwinian selection of DNA-encoded synthetic molecules. Nat. Chem. 14, 141–152 (2022). https://doi.org/10.1038/s41557-021-00829-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-021-00829-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing