Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bottlebrush polymers with flexible enantiomeric side chains display differential biological properties

Abstract

Chirality and molecular conformation are central components of life: biological systems rely on stereospecific interactions between discrete (macro)molecular conformers, and the impacts of stereochemistry and rigidity on the properties of small molecules and biomacromolecules have been intensively studied. Nevertheless, how these features affect the properties of synthetic macromolecules has received comparably little attention. Here we leverage iterative exponential growth and ring-opening metathesis polymerization to produce water-soluble, chiral bottlebrush polymers (CBPs) from two enantiomeric pairs of macromonomers of differing rigidity. Remarkably, CBPs with conformationally flexible, mirror image side chains show several-fold differences in cytotoxicity, cell uptake, blood pharmacokinetics and liver clearance; CBPs with comparably rigid, mirror image side chains show no differences. These observations are rationalized with a simple model that correlates greater conformational freedom with enhanced chiral recognition. Altogether, this work provides routes to the synthesis of chiral nanostructured polymers and suggests key roles for stereochemistry and conformational rigidity in the design of future biomaterials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Conceptual design of this work.
Fig. 2: Scheme for two-atom IEG synthesis.
Fig. 3: Chemical structures of two-atom versus five-atom MMs and CBPs and comparison of their CD spectra.
Fig. 4: Analysis of conformational flexibility of 2A-R-OH-MM and 5A-R-OH-MM using molecular dynamics simulations.
Fig. 5: Cytotoxicity and uptake of CBPs in three different cell lines.
Fig. 6: Blood compartment pharmacokinetics and ex vivo biodistribution for CBPs in healthy BALB/c mice (n = 3 mice per treatment group).

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available within the article and its Supplementary Information and can also be obtained from the corresponding author upon reasonable request.

References

  1. Alberts, B. et al. Molecular Biology of the Cell 6th edn (Garland Science, 2014).

  2. Bustamante, C., Cheng, W. & Mejia, Y. X. Revisiting the central dogma one molecule at a time. Cell 144, 480–497 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Schneider-Poetsch, T. & Yoshida, M. Along the central dogma—controlling gene expression with small molecules. Annu. Rev. Biochem. 87, 391–420 (2018).

    Article  CAS  PubMed  Google Scholar 

  4. Breslow, R. Artificial enzymes. Science 218, 532–537 (1982).

    Article  CAS  PubMed  Google Scholar 

  5. Breslow, R. & Cheng, Z.-L. On the origin of terrestrial homochirality for nucleosides and amino acids. Proc. Natl Acad. Sci. USA 106, 9144–9146 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. FDA’s policy statement on the development of new stereoisomeric drugs. Chirality 4, 338–340 (1992).

  7. Smith, S. W. Chiral toxicology: it’s the same thing…only different. Toxicol. Sci. 110, 4–30 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Brooks, W. H., Guida, W. C. & Daniel, K. G. The significance of chirality in drug design and development. Curr. Top. Med. Chem. 11, 760–770 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shi, J., Votruba, A. R., Farokhzad, O. C. & Langer, R. Nanotechnology in drug delivery and tissue engineering: from discovery to applications. Nano Lett. 10, 3223–3230 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kakkar, A., Traverso, G., Farokhzad, O. C., Weissleider, R. & Langer, R. Evolution of macromolecular complexity in drug delivery systems. Nat. Rev. Chem. 1, 0063 (2017).

    Article  CAS  Google Scholar 

  11. Elsabahy, M., Heo, G. S., Lim, S.-M., Sun, G. & Wooley, K. L. Polymeric nanostructures for imaging and therapy. Chem. Rev. 115, 10967–11011 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Washington, M. A. et al. The impact of monomer sequence and stereochemistry on the swelling and erosion of biodegradable poly(lactic-co-glycolic acid) matrices. Biomaterials 117, 66–76 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Jokerst, J. V., Lobovkina, T., Zare, R. N. & Gambhir, S. S. Nanoparticle PEGylation for imaging and therapy. Nanomedicine 6, 715–728 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Otsukaa, H., Nagasaki, Y. & Kataoka, K. PEGylated nanoparticles for biological and pharmaceutical applications. Adv. Drug Deliv. Rev. 64, 246–255 (2012).

    Article  Google Scholar 

  15. Knop, K., Hoogenboom, R., Fischer, D. & Schubert, U. S. Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew. Chem. Int. Ed. 49, 6288–6308 (2010).

    Article  CAS  Google Scholar 

  16. Kolate, A. et al. PEG—a versatile conjugating ligand for drugs and drug delivery systems. J. Control. Release 192, 67–81 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. Kiick, K. L., Saxon, E., Tirrell, D. A. & Bertozzi, C. R. Incorporation of azides into recombinant proteins for chemoselective modification by the Staudinger ligation. Proc. Natl Acad. Sci. USA 99, 19–24 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Johnson, J. A., Lu, Y. Y., van Deventer, J. A. & Tirrell, D. A. Residue-specific incorporation of non-canonical amino acids into proteins: recent developments and applications. Curr. Opin. Chem. Biol. 14, 774–780 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. van Hest, J. C. M. & Tirrell, D. A. Protein-based materials, toward a new level of structural control. Chem. Commun. 0, 1897–1904 (2001).

    Article  Google Scholar 

  20. Lutz, J.-F., Ouchi, M., Liu, D. R. & Sawamoto, M. Sequence-controlled polymers. Science 341, 1238149 (2013).

    Article  PubMed  Google Scholar 

  21. Simon, R. J. et al. Peptoids: a modular approach to drug discovery. Proc. Natl Acad. Sci. USA 89, 9367–9371 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wender, P. A. et al. The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: peptoid molecular transporters. Proc. Natl Acad. Sci. USA 97, 13003–13008 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fowler, S. A. & Blackwell, H. E. Structure–function relationships in peptoids: recent advances toward deciphering the structural requirements for biological function. Org. Biomol. Chem. 7, 1508–1524 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gestwicki, J. E., Cairo, C. W., Strong, L. E., Oetjen, K. A. & Kiessling, L. L. Influencing receptor–ligand binding mechanisms with multivalent ligand architecture. J. Am. Chem. Soc. 124, 14922–14933 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Yeom, J. et al. Chiral supraparticles for controllable nanomedicine. Adv. Mater. 32, 1903878 (2020).

    Article  CAS  Google Scholar 

  26. Wang, X., Gan, H. & Sun, T. Chiral design for polymeric biointerface: the influence of surface chirality on protein adsorption. Adv. Func. Mater. 21, 3276–3281 (2011).

    Article  CAS  Google Scholar 

  27. Pooga, M. et al. Cell penetrating PNA constructs regulate galanin receptor levels and modify pain transmission in vivo. Nat. Biotechnol. 16, 857–861 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Pattni, B. S., Chupin, V. V. & Torchilin, V. P. New developments in liposomal drug delivery. Chem. Rev. 115, 10938–10966 (2015).

    Article  CAS  PubMed  Google Scholar 

  29. Metselaar, J. M. et al. A novel family of l-amino acid-based biodegradable polymer−lipid conjugates for the development of long-circulating liposomes with effective drug-targeting capacity. Bioconjug. Chem. 14, 1156–1164 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Gaspar, M. M., Perez-Soler, R. & Cruz, M. E. Biological characterization of l-asparaginase liposomal formulations. Cancer Chemother. Pharmacol. 38, 373–377 (1996).

    Article  CAS  PubMed  Google Scholar 

  31. Sheiko, S. S., Sumerlin, B. S. & Matyjaszewski, K. Cylindrical molecular brushes: synthesis, characterization, and properties. Prog. Polym. Sci. 33, 759–785 (2008).

    Article  CAS  Google Scholar 

  32. Verduzco, R., Li, X., Pesek, S. L. & Stein, G. E. Structure, function, self-assembly, and applications of bottlebrush copolymers. Chem. Soc. Rev. 44, 2405–2420 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Bielawski, C. W. & Grubbs, R. H. Living ring-opening metathesis polymerization. Prog. Polym. Sci. 32, 1–29 (2007).

    Article  CAS  Google Scholar 

  34. Johnson, J. A. et al. Drug-loaded, bivalent-bottle-brush polymers by graft-through ROMP. Macromolecules 43, 10326–10335 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nguyen, H. V.-T. et al. Nitroxide-based macromolecular contrast agents with unprecedented transverse relaxivity and stability for magnetic resonance imaging of tumors. ACS Cent. Sci. 3, 800–811 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Barnes, J. C. et al. Using an RNAi signature assay to guide the design of three-drug-conjugated nanoparticles with validated mechanisms, in vivo efficacy, and low toxicity. J. Am. Chem. Soc. 138, 12494–12501 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Binauld, S., Damiron, D., Connal, L. A., Hawker, C. J. & Drockenmuller, E. Precise synthesis of molecularly defined oligomers and polymers by orthogonal iterative divergent/convergent approaches. Macromol. Rapid Commun. 32, 147–168 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Barnes, J. C. et al. Iterative exponential growth of stereo- and sequence-controlled polymers. Nat. Chem. 7, 810–815 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Jiang, Y. et al. Iterative exponential growth synthesis and assembly of uniform diblock copolymers. J. Am. Chem. Soc. 138, 9369–9372 (2016).

    Article  CAS  PubMed  Google Scholar 

  40. Golder, M. R. et al. Stereochemical sequence dictates unimolecular diblock copolymer assembly. J. Am. Chem. Soc. 140, 1596–1599 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pérez-Hernández, G., Paul, F., Giorgino, T., De Fabritiis, G. & Noé, F. Identification of slow molecular order parameters for Markov model construction. J. Chem. Phys. 139, 15102 (2013).

    Article  Google Scholar 

  42. Schwantes, C. R. & Pande, V. S. Improvements in Markov state model construction reveal many non-native interactions in the folding of NTL9. J. Chem. Theory Comput. 9, 2000–2009 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bowman, G. R. Improved coarse-graining of Markov state models via explicit consideration of statistical uncertainty. J. Chem. Phys. 137, 134111 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Dryzun, C., Zait, A. & Avnir, D. Quantitative symmetry and chirality—a fast computational algorithm for large structures: proteins, macromolecules, nanotubes, and unit cells. J. Comput. Chem. 32, 2526–2538 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Sowers, M. A. et al. Redox-responsive branched-bottlebrush polymers for in vivo MRI and fluorescence imaging. Nat. Commun. 5, 5460 (2014).

    Article  PubMed  Google Scholar 

  46. Johnson, J. A. et al. Core-clickable peg-branch-azide bivalent-bottle-brush polymers by romp: grafting-through and clicking-to. J. Am. Chem. Soc. 133, 559–566 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Choi, J., Reipa, V., Hitchins, V. M., Goering, P. L. & Malinauskas, R. A. Physicochemical characterization and in vitro hemolysis evaluation of silver nanoparticles. Toxicol. Sci. 123, 133–143 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Yu, B. et al. A novel star like eight-arm polyethylene glycol–deferoxamine conjugate for iron overload therapy. Pharmaceutics 12, 329 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  49. Pachara, S. et al. Cytocompatibility evaluation of a novel series of PEG-functionalized lactide–caprolactone copolymer biomaterials for cardiovascular applications. Front. Bioeng. Biotechnol. 8, 991 (2020).

    Article  Google Scholar 

  50. Rowland, M., Benet, L. Z. & Graham, G. G. Clearance concepts in pharmacokinetics. J. Pharmacokinet. Biopharm. 1, 123–136 (1973).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Army Research Office (W911NF-17-1-0521) and the National Institutes of Health (R01-CA220468-01 and postdoctoral fellowships for M.R.G. and N.J.O.) for supporting this work. We thank the National Science Foundation (graduate research fellowship for H.V.-T.N.). This work was supported in part by the Koch Institute Support (core) Grant P30-CA14051 from the National Cancer Institute. We acknowledge the support of the National Institute of Standards and Technology, US Department of Commerce, in providing the neutron research facilities used in this work. We also thank J. Zhao for assistance with Fig. 1. We thank S.E. Denmark and A.F. Zahrt for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

J.A.J., H.V.-T.N., J.C.B. and Y.J. conceived the idea. H.V.-T.N., Y.J., J.C.B., W.W., K.K.C., Z.H. and K.Y. performed the chemical syntheses and characterizations. H.V.-T.N., Y.J. J.C.B., N.J.O., Q.C., W.W. and M.R.G. performed biological studies. S.M., S.A. and R.G.-B. conducted simulations. M.J.A.H. conducted SANS studies. D.S., Y.S., A.P.W. and J.A.J. designed and conducted coarse-grained simulations. J.A.J., H.V.-T.N. and Y.J. wrote the manuscript. All authors discussed the results and edited the manuscript.

Corresponding authors

Correspondence to Rafael Gómez-Bombarelli or Jeremiah A. Johnson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Chemistry thanks Arthi Jayaraman and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–90, Tables 1–3, discussion, materials/general experimental methods/instrumentations and synthetic protocols.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, H.VT., Jiang, Y., Mohapatra, S. et al. Bottlebrush polymers with flexible enantiomeric side chains display differential biological properties. Nat. Chem. 14, 85–93 (2022). https://doi.org/10.1038/s41557-021-00826-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-021-00826-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing