Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A dual cellular–heterogeneous catalyst strategy for the production of olefins from glucose

Abstract

Living systems provide a promising approach to chemical synthesis, having been optimized by evolution to convert renewable carbon sources, such as glucose, into an enormous range of small molecules. However, a large number of synthetic structures can still be difficult to obtain solely from cells, such as unsubstituted hydrocarbons. In this work, we demonstrate the use of a dual cellular–heterogeneous catalytic strategy to produce olefins from glucose using a selective hydrolase to generate an activated intermediate that is readily deoxygenated. Using a new family of iterative thiolase enzymes, we genetically engineered a microbial strain that produces 4.3 ± 0.4 g l−1 of fatty acid from glucose with 86% captured as 3-hydroxyoctanoic and 3-hydroxydecanoic acids. This 3-hydroxy substituent serves as a leaving group that enables heterogeneous tandem decarboxylation–dehydration routes to olefinic products on Lewis acidic catalysts without the additional redox input required for enzymatic or chemical deoxygenation of simple fatty acids.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Biological hydrocarbons.
Fig. 2: Identification of a new biosynthetic PaaJ-like thiolase family.
Fig. 3: In vitro reconstitution of the PaaJ-dependent fatty acid synthesis pathway.
Fig. 4: Production of medium-chain C8–C10 fatty acids in engineered E. coli strains that contained a thiolase-dependent pathway for iterative chain elongation.
Fig. 5: Downstream processing of 3-hydroxy fatty acids to olefins on heterogeneous catalysts.

Data availability

All data generated and analysed during this study are included in the published article, source data files or supporting information files. All plasmids and strains generated in this study are available by request. Source data are provided with this paper.

References

  1. 1.

    Nielsen, J. & Keasling, J. D. Engineering cellular metabolism. Cell 164, 1185–1197 (2016).

    CAS  PubMed  Google Scholar 

  2. 2.

    Woolston, B. M., Edgar, S. & Stephanopoulos, G. Metabolic engineering: past and future. Annu. Rev. Chem. Biomol. Eng. 4, 259–288 (2013).

    CAS  PubMed  Google Scholar 

  3. 3.

    Lee, J. W. et al. Systems metabolic engineering of microorganisms for natural and non-natural chemicals. Nat. Chem. Biol. 8, 536–546 (2012).

    CAS  PubMed  Google Scholar 

  4. 4.

    Liao, J. C., Mi, L., Pontrelli, S. & Luo, S. Fuelling the future: microbial engineering for the production of sustainable biofuels. Nat. Rev. Micro. 14, 288–304 (2016).

    CAS  Google Scholar 

  5. 5.

    Schirmer, A., Rude, M. A., Li, X., Popova, E. & Del Cardayre, S. B. Microbial biosynthesis of alkanes. Science 329, 559–562 (2010).

    CAS  PubMed  Google Scholar 

  6. 6.

    Rude, M. A. et al. Terminal olefin (1-alkene) biosynthesis by a novel P450 fatty acid decarboxylase from Jeotgalicoccus species. Appl. Environ. Microbiol. 77, 1718–1727 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Rui, Z. et al. Microbial biosynthesis of medium-chain 1-alkenes by a nonheme iron oxidase. Proc. Natl Acad. Sci. USA 111, 18237–18242 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Rui, Z., Harris, N. C., Zhu, X., Huang, W. & Zhang, W. Discovery of a family of desaturase-like enzymes for 1-alkene biosynthesis. ACS Catal. 5, 7091–7094 (2015).

    CAS  Google Scholar 

  9. 9.

    Gu, L. et al. Polyketide decarboxylative chain termination preceded by O-sulfonation in curacin A biosynthesis. J. Am. Chem. Soc. 131, 16033–16035 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Christenson, J. K. et al. OleB from bacterial hydrocarbon biosynthesis is a β-lactone decarboxylase that shares key features with haloalkane dehalogenases. Biochemistry 56, 5278–5287 (2017).

    CAS  PubMed  Google Scholar 

  11. 11.

    Bernard, A. et al. Reconstitution of plant alkane biosynthesis in yeast demonstrates that Arabidopsis ECERIFERUM1 and ECERIFERUM3 are core components of a very-long-chain alkane synthesis complex. Plant Cell 24, 3106–3118 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Bond-Watts, B. B., Bellerose, R. J. & Chang, M. C. Y. Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways. Nat. Chem. Biol. 7, 222–227 (2011).

    CAS  PubMed  Google Scholar 

  13. 13.

    Shen, C. R. et al. Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli. Appl. Environ. Microbiol. 77, 2905–2915 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Rudroff, F. et al. Opportunities and challenges for combining chemo- and biocatalysis. Nat. Catal. 1, 12–22 (2018).

    Google Scholar 

  15. 15.

    Abdelrahman, O. A. et al. Renewable isoprene by sequential hydrogenation of itaconic acid and dehydra-decyclization of 3-methyl-tetrahydrofuran. ACS Catal. 7, 1428–1431 (2017).

    CAS  Google Scholar 

  16. 16.

    Suastegui, M. et al. Combining metabolic engineering and electrocatalysis: application to the production of polyamides from sugar. Angew. Chem. Int. Ed. 55, 2368–2373 (2016).

    CAS  Google Scholar 

  17. 17.

    Choi, Y. J. & Lee, S. Y. Microbial production of short-chain alkanes. Nature 502, 571–574 (2013).

    CAS  PubMed  Google Scholar 

  18. 18.

    Steen, E. J. et al. Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature 463, 559–562 (2010).

    CAS  PubMed  Google Scholar 

  19. 19.

    Lennen, R. M., Braden, D. J., West, R. M., Dumesic, J. A. & Pfleger, B. F. A process for microbial hydrocarbon synthesis: overproduction of fatty acids in Escherichia coli and catalytic conversion to alkanes. Biotechnol. Bioeng. 106, 193–202 (2010).

    CAS  PubMed  Google Scholar 

  20. 20.

    Yan, Q. et al. Metabolic engineering of β-oxidation to leverage thioesterases for production of 2-heptanone, 2-nonanone and 2-undecanone. Metab. Eng. 61, 335–343 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Blazeck, J., Liu, L., Knight, R. & Alper, H. S. Heterologous production of pentane in the oleaginous yeast Yarrowia lipolytica. J. Biotechnol. 165, 184–194 (2013).

    CAS  PubMed  Google Scholar 

  22. 22.

    Kim, H. M., Chae, T. U., Choi, S. Y., Kim, W. J. & Lee, S. Y. Engineering of an oleaginous bacterium for the production of fatty acids and fuels. Nat. Chem. Biol. 15, 721–729 (2019).

    CAS  PubMed  Google Scholar 

  23. 23.

    Magnuson, K., Jackowski, S., Rock, C. O. & Cronan, J. E. Regulation of fatty-acid biosynthesis in Escherichia coli. Microbiol. Rev. 57, 522–542 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Dellomonaco, C., Clomburg, J. M., Miller, E. N. & Gonzalez, R. Engineered reversal of the β-oxidation cycle for the synthesis of fuels and chemicals. Nature 476, 355–359 (2011).

    CAS  Google Scholar 

  25. 25.

    Sheppard, M. J., Kunjapur, A. M. & Prather, K. L. J. Modular and selective biosynthesis of gasoline-range alkanes. Metab. Eng. 33, 28–40 (2016).

    CAS  PubMed  Google Scholar 

  26. 26.

    Haapalainen, A. M., Meriläinen, G. & Wierenga, R. K. The thiolase superfamily: condensing enzymes with diverse reaction specificities. Trends Biochem. Sci. 31, 64–71 (2006).

    CAS  PubMed  Google Scholar 

  27. 27.

    Spratt, S. K., Black, P. N., Ragozzino, M. M. & Nunn, W. D. Cloning, mapping, and expression of genes involved in the fatty acid-degradative multienzyme complex of Escherichia coli. J. Bacteriol. 158, 535–542 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Atkinson, H. J., Morris, J. H., Ferrin, T. E. & Babbitt, P. C. Using sequence similarity networks for visualization of relationships across diverse protein superfamilies. PLoS ONE 4, e4345 (2009).

    PubMed  PubMed Central  Google Scholar 

  29. 29.

    Wittkop, T. et al. Partitioning biological data with transitivity clustering. Nat. Methods 7, 419–420 (2010).

    CAS  PubMed  Google Scholar 

  30. 30.

    Masamune, S., Walsh, C. T., Sinskey, A. J. & Peoples, O. Poly-(R)-3-hydroxybutyrate (PHB) biosynthesis: mechanistic studies on the biological Claisen condensation catalyzed by β-ketoacyl thiolase. Pure Appl. Chem. 61, 303–312 (1989).

    CAS  Google Scholar 

  31. 31.

    Slater, S. et al. Multiple β-ketothiolases mediate poly(β-hydroxyalkanoate) copolymer synthesis in Ralstonia eutropha. J. Bacteriol. 180, 1979–1987 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Teufel, R. et al. Bacterial phenylalanine and phenylacetate catabolic pathway revealed. Proc. Natl Acad. Sci. USA 107, 14390–14395 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Toomey, R. E. & Wakil, S. J. Studies on the mechanism of fatty acid synthesis XV. Preparation and general properties of β-ketoacyl acyl carrier protein reductase from Escherichia coli. Biochim. Biophys. Acta Lipids Lipid Metab. 116, 189–197 (1966).

    CAS  Google Scholar 

  34. 34.

    Park, S. J. & Lee, S. Y. Identification and characterization of a new enoyl coenzyme A hydratase involved in biosynthesis of medium-chain-length polyhydroxyalkanoates in recombinant Escherichia coli. J. Bacteriol. 185, 5391–5397 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Campbell, J. W. & Cronan, J. E. The enigmatic Escherichia coli fadE gene is yafH. J. Bacteriol. 184, 3759–3764 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Engemann, C. et al. Identification and functional characterization of genes and corresponding enzymes involved in carnitine metabolism of Proteussp. Arch. Microbiol. 183, 176–189 (2005).

    CAS  PubMed  Google Scholar 

  37. 37.

    Bond-Watts, B. B., Weeks, A. M. & Chang, M. C. Y. Biochemical and structural characterization of the trans-enoyl-CoA reductase from Treponema denticola. Biochemistry 51, 6827–6837 (2012).

    CAS  PubMed  Google Scholar 

  38. 38.

    Pollard, M. R., Anderson, L., Fan, C., Hawkins, D. J. & Davies, H. M. A specific acyl-ACP thioesterase implicated in medium-chain fatty acid production in immature cotyledons of Umbellularia californica. Arch. Biochem. Biophys. 284, 306–312 (1991).

    CAS  PubMed  Google Scholar 

  39. 39.

    Dehesh, K., Edwards, P., Hayes, T., Cranmer, A. M. & Fillatti, J. Two novel thioesterases are key determinants of the bimodal distribution of acyl chain length of Cuphea palustris seed oil. Plant Physiol. 110, 203–210 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Grisewood, M. J. et al. Computational redesign of acyl-ACP thioesterase with improved selectivity toward medium-chain-length fatty acids. ACS Catal. 7, 3837–3849 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Jing, F. et al. Phylogenetic and experimental characterization of an acyl-ACP thioesterase family reveals significant diversity in enzymatic specificity and activity. BMC Biochem. 12, 44 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Campbell, J. W., Morgan-Kiss, R. M. & Cronan, J. E. A new Escherichia coli metabolic competency: growth on fatty acids by a novel anaerobic β-oxidation pathway. Mol. Microbiol. 47, 793–805 (2003).

    CAS  PubMed  Google Scholar 

  43. 43.

    McMurry, L. M., Oethinger, M. & Levy, S. B. Triclosan targets lipid synthesis. Nature 394, 531–532 (1998).

    CAS  Google Scholar 

  44. 44.

    Mäki-Arvela, P., Kubickova, I., Snåre, M., Eränen, K. & Murzin, D. Y. Catalytic deoxygenation of fatty acids and their derivatives. Energy Fuels 21, 30–41 (2007).

    Google Scholar 

  45. 45.

    Tanzawa, T. & Schwartz, J. Catalytic conversion of β-hydroxy carboxylic acids to olefins by tungsten(VI) complexes: a new acyl group transfer catalyst. Organometallics 9, 3026–3027 (1990).

    CAS  Google Scholar 

  46. 46.

    Wang, D., Hakim, S. H., Martin Alonso, D. & Dumesic, J. A. A highly selective route to linear alpha olefins from biomass-derived lactones and unsaturated acids. Chem. Commun. 49, 7040–7043 (2013).

    CAS  Google Scholar 

  47. 47.

    Chatterjee, A., Hopen Eliasson, S. H. & Jensen, V. R. Selective production of linear α-olefins via catalytic deoxygenation of fatty acids and derivatives. Catal. Sci. Technol. 8, 1487–1499 (2018).

    CAS  Google Scholar 

  48. 48.

    Chen, C. S. H. & Bridger, R. F. Shape-selective oligomerization of alkenes to near-linear hydrocarbons by zeolite catalysis. J. Catal. 161, 687–693 (1996).

    CAS  Google Scholar 

  49. 49.

    O’Connor, C. T. & Kojima, M. Alkene oligomerization. Catal. Today 6, 329–349 (1990).

    Google Scholar 

  50. 50.

    Abdelrahman, O. A. et al. Biomass-derived butadiene by dehydra-decyclization of tetrahydrofuran. ACS Sustain. Chem. Eng. 5, 3732–3736 (2017).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the generous support of the National Science Foundation through a CAREER Award (029504-003) to M.C.Y.C. and the Center for Sustainable Polymers, a National Science Foundation-supported Center for Chemical Innovation (CHE-1901635). H.S. acknowledges support from the Camille and Henry Dreyfus Postdoctoral Program in Environmental Chemistry. Z.Q.W. also acknowledges the generous support from the Research Foundation for the State University of New York (71272-ZQW).

Author information

Affiliations

Authors

Contributions

Z.Q.W., H.S., N.H., D.S.P., P.J.D. and M.C.Y.C designed the research, Z.Q.W., H.S., E.J.K., N.H., D.S.P. and Y.M. carried out the experiments, Z.Q.W., H.S., E.J.K., N.H., D.S.P., G.K., P.J.D. and M.C.Y.C analysed the data and Z.Q.W., H.S., G.K., P.J.D. and M.C.Y.C wrote the paper.

Corresponding authors

Correspondence to Zhen Q. Wang or Michelle C. Y. Chang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Chemistry thanks Stephen Wallace and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary materials, methods, figures, tables, and references.

Supplementary Data 1

Raw data for Supplementary Fig. S2C.

Supplementary Data 2

Raw data for Supplementary Fig. S3.

Supplementary Data 3

Raw data for Supplementary Fig. S4.

Supplementary Data 4

Raw data for Supplementary Fig. S5.

Supplementary Data 5

Raw data for Supplementary Fig. S6.

Supplementary Data 6

Raw data for Supplementary Fig. S7.

Supplementary Data 7

Raw data for Supplementary Fig. S8.

Supplementary Data 8

Raw data for Supplementary Fig. S9.

Source data

Source Data Fig. 3

Raw data for Fig. 3.

Source Data Fig. 4

Raw data for Fig. 4.

Source Data Fig. 5

Raw data for Fig. 5.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Z.Q., Song, H., Koleski, E.J. et al. A dual cellular–heterogeneous catalyst strategy for the production of olefins from glucose. Nat. Chem. 13, 1178–1185 (2021). https://doi.org/10.1038/s41557-021-00820-0

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing