Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Visible light-driven conjunctive olefination

A Publisher Correction to this article was published on 26 November 2021

This article has been updated

Abstract

Carboxylic acids and aldehydes are ubiquitous in chemistry and are native functionalities in many bioactive molecules and natural products. As such, a general cross-coupling process that involves these partners would open new avenues to achieve molecular diversity. Here we report a visible-light-mediated and transition metal-free conjunctive olefination that uses an alkene ‘linchpin’ with a defined geometry to cross-couple complex molecular scaffolds that contain carboxylic acids and aldehydes. The chemistry merges two cornerstones of organic synthesis—namely, the Wittig reaction and photoredox catalysis—in a catalytic cycle that couples a radical addition process with the redox generation of a phosphonium ylide. The methodology allows the rapid structural diversification of bioactive molecules and natural products in a native form, with a high functional group tolerance, and also forges a new alkene functional group with a programmable EZ stereochemistry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Conceptual design of the process.
Fig. 2: Scale-up studies and experiments for mechanistic insights.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the paper and its Supplementary Information.

Change history

References

  1. Schreiber, S. L. Target-oriented and diversity-oriented organic synthesis in drug discovery. Science 287, 1964–1969 (2000).

    Article  CAS  Google Scholar 

  2. de Meijere, A. & Diederich, F. Metal-Catalyzed Cross-Coupling Reactions 2nd edn (Wiley, 2004).

  3. Schwarz, J. & König, B. Decarboxylative reactions with and without light—a comparison. Green Chem. 20, 323–361 (2018).

    Article  CAS  Google Scholar 

  4. Qin, T. et al. A general alkyl–alkyl cross-coupling enabled by redox-active esters and alkylzinc reagents. Science 352, 801–805 (2016).

    Article  CAS  Google Scholar 

  5. Edwards, J. T. et al. Decarboxylative alkenylation. Nature 545, 213–218 (2017).

    Article  CAS  Google Scholar 

  6. Cornella, J. et al. Practical Ni-catalyzed aryl–alkyl cross-coupling of secondary redox-active esters. J. Am. Chem. Soc. 138, 2174–2177 (2016).

    Article  CAS  Google Scholar 

  7. Zuo, Z. et al. Merging photoredox with nickel catalysis: coupling of α-carboxyl sp3-carbons with aryl halides. Science 345, 437–440 (2014).

    Article  CAS  Google Scholar 

  8. Noble, A., McCarver, S. J. & MacMillan, D. W. C. Merging photoredox and nickel catalysis: decarboxylative cross-coupling of carboxylic acids with vinyl halides. J. Am. Chem. Soc. 137, 624–627 (2015).

    Article  CAS  Google Scholar 

  9. Johnston, C. P., Smith, R. T., Allmendinger, S. & MacMillan, D. W. C. Metallaphotoredox-catalysed sp3sp3 cross-coupling of carboxylic acids with alkyl halides. Nature 536, 322–325 (2016).

    Article  CAS  Google Scholar 

  10. Jin, Y. & Fu, H. Visible-light photoredox decarboxylative couplings. Asian J. Org. Chem. 6, 368–385 (2017).

    Article  CAS  Google Scholar 

  11. Prier, C. K., Rankic, D. A. & MacMillan, D. W. C. Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem. Rev. 113, 5322–5363 (2013).

    Article  CAS  Google Scholar 

  12. Shaw, M. H., Twilton, J. & MacMillan, D. W. C. Photoredox catalysis in organic chemistry. J. Org. Chem. 81, 6898–6926 (2016).

    Article  CAS  Google Scholar 

  13. Pitre, S. P., Weires, N. A. & Overman, L. E. Forging C(sp3)–C(sp3) bonds with carbon-centered radicals in the synthesis of complex molecules. J. Am. Chem. Soc. 141, 2800–2813 (2019).

    Article  CAS  Google Scholar 

  14. Nicholls, T. P., Leonori, D. & Bissember, A. C. Applications of visible light photoredox catalysis to the synthesis of natural products and related compounds. Nat. Prod. Rep. 33, 1248–1254 (2016).

    Article  CAS  Google Scholar 

  15. Zhang, L. et al. Catalytic conjunctive cross-coupling enabled by metal-induced metallate rearrangement. Science 351, 70–74 (2016).

    Article  CAS  Google Scholar 

  16. Derosa, J., Apolinar, O., Kang, T., Tran, V. T. & Engle, K. M. Recent developments in nickel-catalyzed intermolecular dicarbofunctionalization of alkenes. Chem. Sci. 11, 4287–4296 (2020).

    Article  CAS  Google Scholar 

  17. Ertl, P., Altmann, E. & McKenna, J. M. The most common functional groups in bioactive molecules and how their popularity has evolved over time. J. Med. Chem. 63, 8408–8418 (2020).

    Article  CAS  Google Scholar 

  18. Wittig, G. Nobel Lecture: from Diyls to My Idyll https://www.nobelprize.org/uploads/2018/06/wittig-lecture.pdf (1979).

  19. Maryanoff, B. E. & Reitz, A. B. The Wittig olefination reaction and modifications involving phosphoryl-stabilized carbanions. Stereochemistry, mechanism, and selected synthetic aspects. Chem. Rev. 89, 863–927 (1989).

    Article  CAS  Google Scholar 

  20. Nicolaou, K. C., Härter, M. W., Gunzner, J. L. & Nadin, A. The Wittig and related reactions in natural product synthesis. Liebigs Ann. 1997, 1283–1301 (1997).

    Article  Google Scholar 

  21. Kuźnik, A., Mazurkiewicz, R. & Fryczkowska, B. Vinylphosphonium and 2-aminovinylphosphonium salts—preparation and applications in organic synthesis. Beilstein J. Org. Chem. 13, 2710–2738 (2017).

    Article  Google Scholar 

  22. Schweizer, E. E. & Bach, R. D. Phosphonium salts. II. 2-Bromophenetole and triphenylphosphorus as novel phosphonioethylation precursors. J. Org. Chem. 29, 1746–1751 (1964).

    Article  CAS  Google Scholar 

  23. Scheweizer, E. E. Reactions of phosphorus compounds. III. A new general ring synthesis from vinyltriphenylphosphonium bromide. J. Am. Chem. Soc. 86, 2744 (1964).

    Article  Google Scholar 

  24. Schweizer, E. E. & O’Neill, G. J. Reactions of phosphorus compounds. VI. A general synthesis of cycloalkenes. J. Org. Chem. 30, 2082–2083 (1965).

    Article  CAS  Google Scholar 

  25. Chu, L., Ohta, C., Zuo, Z. & MacMillan, D. W. C. Carboxylic acids as a traceless activation group for conjugate additions: a three-step synthesis of (±)-pregabalin. J. Am. Chem. Soc. 136, 10886–10889 (2014).

    Article  CAS  Google Scholar 

  26. Hansch, C., Leo, A. & Taft, R. W. A survey of Hammett substituent constants and resonance and field parameters. Chem. Rev. 91, 165–195 (1991).

    Article  CAS  Google Scholar 

  27. Giese, B. Formation of CC bonds by addition of free radicals to alkenes. Angew. Chem. Int. Ed. Engl. 22, 753–764 (1983).

    Article  Google Scholar 

  28. Barton, D. H. R., Togo, H. & Zard, S. Z. Radical addition to vinyl sulphones and vinyl phosphonium salts. Tetrahedron Lett. 26, 6349–6352 (1985).

    Article  CAS  Google Scholar 

  29. Barton, D. H. R. et al. Decarboxylative radical addition to vinylsulphones and vinylphosphonium bromide: some further novel transformations of geminal (pyridine-2-thiyl) phenylsulphones. Tetrahedron 47, 7091–7108 (1991).

    Article  CAS  Google Scholar 

  30. Wiles, R. J. & Molander, G. A. Photoredox-mediated net-neutral radical/polar crossover reactions. Isr. J. Chem. 60, 281–293 (2020).

    Article  CAS  Google Scholar 

  31. Pitzer, L., Schwarz, J. L. & Glorius, F. Reductive radical–polar crossover: traditional electrophiles in modern radical reactions. Chem. Sci. 10, 8285–8291 (2019).

    Article  CAS  Google Scholar 

  32. Jiang, M., Yang, H., Lefebvre, Q., Su, J. & Fu, H. Olefination of alkyl halides with aldehydes by merging visible-light photoredox catalysis and organophosphorus chemistry. iScience 6, 102–113 (2018).

    Article  CAS  Google Scholar 

  33. Shang, T.-Y. et al. Recent advances of 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene (4CzIPN) in photocatalytic transformations. Chem. Commun. 55, 5408–5419 (2019).

    Article  CAS  Google Scholar 

  34. Singh, K., Staig, S. J. & Weaver, J. D. Facile synthesis of Z-alkenes via uphill catalysis. J. Am. Chem. Soc. 136, 5275–5278 (2014).

    Article  CAS  Google Scholar 

  35. Metternich, J. B. & Gilmour, R. A bio-inspired, catalytic E → Z isomerization of activated olefins. J. Am. Chem. Soc. 137, 11254–11257 (2015).

    Article  CAS  Google Scholar 

  36. Molloy, J. J. et al. Boron-enabled geometric isomerization of alkenes via selective energy-transfer catalysis. Science 369, 302–306 (2020).

    Article  CAS  Google Scholar 

  37. Golub, M. A. The radiation induced cistrans isomerization of polybutadiene. II. J. Am. Chem. Soc. 81, 54–58 (1959).

    Article  CAS  Google Scholar 

  38. Moussebois, C. & Dale, J. A method of cis,trans-isomerisation of non-conjugated olefins without double-bond migration. J. Chem. Soc. C 1966, 260–264 (1966).

    Article  Google Scholar 

  39. Seely, G. R. Kinetics of the photoisomerization of polybutadiene. J. Am. Chem. Soc. 84, 4404–4407 (1962).

    Article  CAS  Google Scholar 

  40. Teders, M. et al. The energy-transfer-enabled biocompatible disulfide–ene reaction. Nat. Chem. 10, 981–988 (2018).

    Article  CAS  Google Scholar 

  41. Roy, A. & Pahan, K. Gemfibrozil, stretching arms beyond lipid lowering. Immunopharmacol. Immunotoxicol. 31, 339–351 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the EPSRC for funding (New Investigator Award EP/V006401/1 to M.S.). M.S. thanks the University of Nottingham and the Green Chemicals Beacon of Excellence for a Nottingham Research Fellowship. D.F. thanks the School of Chemistry, University of Nottingham, for a doctoral fellowship. We thank R. Denton and P. Melchiorre for stimulating discussions and M. Piccinno for proofreading this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

M.S. conceived and discovered the reactivity, led the project and prepared the manuscript with contributions from D.F. D.F. carried out most of the experimental work within the optimization studies and the exploration of the reaction scope.

Corresponding author

Correspondence to Mattia Silvi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

General experimental details; synthesis and characterization data for starting materials, catalysts and novel products; experimental details for mechanistic studies, bibliographic references, NMR spectra. The file is organized in Supplementary Sections 1–6 and includes Figs. 1–5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filippini, D., Silvi, M. Visible light-driven conjunctive olefination. Nat. Chem. 14, 66–70 (2022). https://doi.org/10.1038/s41557-021-00807-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-021-00807-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing