Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Spin-crossover nanoparticles anchored on MoS2 layers for heterostructures with tunable strain driven by thermal or light-induced spin switching

Abstract

In the past few years, the effect of strain on the optical and electronic properties of MoS2 layers has attracted particular attention as it can improve the performance of optoelectronic and spintronic devices. Although several approaches have been explored, strain is typically externally applied on the two-dimensional material. In this work, we describe the preparation of a reversible ‘self-strainable’ system in which the strain is generated at the molecular level by one component of a MoS2-based composite material. Spin-crossover nanoparticles were covalently grafted onto functionalized layers of semiconducting MoS2 to form a hybrid heterostructure. Their ability to switch between two spin states on applying an external stimulus (light irradiation or temperature change) serves to generate strain over the MoS2 layer. A volume change accompanies this spin crossover, and the created strain induces a substantial and reversible change of the electrical and optical properties of the heterostructure.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Schematic representation of the synthetic approach to prepare SCO/MoS2 hybrid heterostructures.
Fig. 2: Spectroscopic characterization of CE-MoS2, PTS-MoS2 and SCO/MoS2-1.
Fig. 3: TEM morphological characterization of SCO/MoS2-1, SCO/MoS2-2a, SCO/MoS2-2b and SCO/MoS2-2c.
Fig. 4: Transport measurements.
Fig. 5: PL measurements.

Data availability

The data that support the findings of this study are available within the paper and its Supplementary Information files and from the corresponding authors upon request. Source data are provided with this paper.

References

  1. 1.

    Stanford, M. G., Rack, P. D. & Jariwala, D. Emerging nanofabrication and quantum confinement techniques for 2D materials beyond graphene. npj 2D Mater. Appl. 2, 20 (2018).

    Article  CAS  Google Scholar 

  2. 2.

    Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  3. 3.

    Xia, W. et al. Recent progress in van der Waals heterojunctions. Nanoscale 9, 4324–4365 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  4. 4.

    Onga, M. et al. Antiferromagnet–semiconductor van der Waals heterostructures: interlayer interplay of exciton with magnetic ordering. Nano Lett. 20, 4625–4630 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  5. 5.

    Hirsch, A. & Hauke, F. Post-graphene 2D chemistry: the emerging field of molybdenum disulfide and black phosphorus functionalization. Angew. Chem. Int. Ed. 57, 4338–4354 (2018).

    CAS  Article  Google Scholar 

  6. 6.

    López-Cabrelles, J. et al. Isoreticular two-dimensional magnetic coordination polymers prepared through pre-synthetic ligand functionalization. Nat. Chem. 10, 1001–1007 (2018).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  7. 7.

    Rodríguez-San-Miguel, D., Montoro, C. & Zamora, F. Covalent organic framework nanosheets: preparation, properties and applications. Chem. Soc. Rev. 49, 2291–2302 (2020).

    PubMed  Article  PubMed Central  Google Scholar 

  8. 8.

    Zhao, Y., Bertolazzi, S. & Samorì, P. A universal approach toward light-responsive two-dimensional electronics: chemically tailored hybrid van der Waals heterostructures. ACS Nano 13, 4814–4825 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  9. 9.

    Jariwala, D., Marks, T. J. & Hersam, M. C. Mixed-dimensional van der Waals heterostructures. Nat. Mater. 16, 170–181 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  10. 10.

    Choi, J., Zhang, H. & Choi, J. H. Modulating optoelectronic properties of two-dimensional transition metal dichalcogenide semiconductors by photoinduced charge transfer. ACS Nano 10, 1671–1680 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  11. 11.

    Das, S., Robinson, J. A., Dubey, M., Terrones, H. & Terrones, M. Beyond graphene: progress in novel two-dimensional materials and van der Waals solids. Ann. Rev. Mater. Res. 45, 1–27 (2015).

    CAS  Article  Google Scholar 

  12. 12.

    Manzeli, S., Ovchinnikov, D., Pasquier, D., Yazyev, O. V. & Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2, 17033 (2017).

    CAS  Article  Google Scholar 

  13. 13.

    Hu, Z. et al. Two-dimensional transition metal dichalcogenides: interface and defect engineering. Chem. Soc. Rev. 47, 3100–3128 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. 14.

    Ganatra, R. & Zhang, Q. Few-layer MoS2: a promising layered semiconductor. ACS Nano 8, 4074–4099 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  15. 15.

    Kan, M. et al. Structures and phase transition of a MoS2 monolayer. J. Phys. Chem. C 118, 1515–1522 (2014).

    CAS  Article  Google Scholar 

  16. 16.

    Wang, L., Xu, Z., Wang, W. & Bai, X. Atomic mechanism of dynamic electrochemical lithiation processes of MoS2 nanosheets. J. Am. Chem. Soc. 136, 6693–6697 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. 17.

    Yuwen, L. et al. Rapid preparation of single-layer transition metal dichalcogenide nanosheets via ultrasonication enhanced lithium intercalation. Chem. Commun. 52, 529–532 (2015).

    Article  CAS  Google Scholar 

  18. 18.

    Lin, Y.-C., Dumcenco, D. O., Huang, Y.-S. & Suenaga, K. Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2. Nat. Nanotechnol. 9, 391–396 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  19. 19.

    Eda, G. et al. Photoluminescence from chemically exfoliated MoS2. Nano Lett. 11, 5111–5116 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  20. 20.

    Fan, X. et al. Fast and efficient preparation of exfoliated 2H MoS2 nanosheets by sonication-assisted lithium intercalation and infrared laser-induced 1 T to 2H phase reversion. Nano Lett. 15, 5956–5960 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  21. 21.

    Yang, D., Sandoval, S. J., Divigalpitiya, W. M. R., Irwin, J. C. & Frindt, R. F. Structure of single-molecular-layer MoS2. Phys. Rev. B 43, 12053–12056 (1991).

    CAS  Article  Google Scholar 

  22. 22.

    Yun, W. S., Han, S. W., Hong, S. C., Kim, I. G. & Lee, J. D. Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M = Mo, W; X = S, Se, Te). Phys. Rev. B 85, 033305 (2012).

    Article  CAS  Google Scholar 

  23. 23.

    Ouyang, B., Xiong, S., Yang, Z., Jing, Y. & Wang, Y. MoS2 heterostructure with tunable phase stability: strain induced interlayer covalent bond formation. Nanoscale 9, 8126–8132 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  24. 24.

    Conley, H. J. et al. Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett. 13, 3626–3630 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  25. 25.

    Manzeli, S., Allain, A., Ghadimi, A. & Kis, A. Piezoresistivity and strain-induced band gap tuning in atomically thin MoS2. Nano Lett. 15, 5330–5335 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. 26.

    Sun, Y. & Liu, K. Strain engineering in functional 2-dimensional materials. J. Appl. Phys. 125, 082402–082412 (2019).

    Article  CAS  Google Scholar 

  27. 27.

    Yang, R. et al. Tuning optical signatures of single- and few-layer MoS2 by blown-bubble bulge straining up to fracture. Nano Lett. 17, 4568–4575 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  28. 28.

    Castellanos-Gomez, A. et al. Local strain engineering in atomically thin MoS2. Nano Lett. 13, 5361–5366 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  29. 29.

    Tsai, M.-Y. et al. Flexible MoS2 field-effect transistors for gate-tunable piezoresistive strain sensors. ACS Appl. Mater. Interfaces 7, 12850–12855 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  30. 30.

    Biccai, S. et al. Negative gauge factor piezoresistive composites based on polymers filled with MoS2 nanosheets. ACS Nano 13, 6845–6855 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  31. 31.

    Urakawa, A. et al. Combined, modulation enhanced X-ray powder diffraction and Raman spectroscopic study of structural transitions in the spin crossover material [Fe(Htrz)2(trz)](BF4). J. Phys. Chem. C 115, 1323–1329 (2011).

    CAS  Article  Google Scholar 

  32. 32.

    Gütlich, P. & Goodwin, H. A. Spin Crossover in Transition Metal Compounds I (Springer, 2009)..

  33. 33.

    Grosjean, A. et al. Crystal structures and spin crossover in the polymeric material [Fe(Htrz)2(trz)](BF4) including coherent-domain size reduction effects. Eur. J. Inorg. Chem. 2013, 796–802 (2013).

    CAS  Article  Google Scholar 

  34. 34.

    Dugay, J. et al. Sensing of the molecular spin in spin-crossover nanoparticles with micromechanical resonators. J. Phys. Chem. C 123, 6778–6786 (2019).

    CAS  Article  Google Scholar 

  35. 35.

    Coronado, E., Galán-Mascarós, J. R., Monrabal-Capilla, M., García-Martínez, J. & Pardo-Ibáñez, P. Bistable spin-crossover nanoparticles showing magnetic thermal hysteresis near room temperature. Adv. Mater. 19, 1359–1361 (2007).

    CAS  Article  Google Scholar 

  36. 36.

    Rotaru, A. et al. Spin state dependence of electrical conductivity of spin crossover materials. Chem. Commun. 48, 4163–4165 (2012).

    CAS  Article  Google Scholar 

  37. 37.

    Boldog, I. et al. Spin-crossover nanocrystals with magnetic, optical, and structural bistability near room temperature. Angew. Chem. Int. Ed. 47, 6433–6437 (2008).

    CAS  Article  Google Scholar 

  38. 38.

    Shepherd, H. J. et al. Molecular actuators driven by cooperative spin-state switching. Nat. Commun. 4, 2607 (2013).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  39. 39.

    Koo, Y.-S. & Galán-Mascarós, J. R. Spin crossover probes confer multistability to organic conducting polymers. Adv. Mater. 26, 6785–6789 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  40. 40.

    Chen, Y.-C., Meng, Y., Ni, Z.-P. & Tong, M.-L. Synergistic electrical bistability in a conductive spin crossover heterostructure. J. Mater. Chem. C 3, 945–949 (2015).

    CAS  Article  Google Scholar 

  41. 41.

    Rat, S. et al. Coupling mechanical and electrical properties in spin crossover polymer composites. Adv. Mater. 30, 1705275 (2018).

    Article  CAS  Google Scholar 

  42. 42.

    Dugay, J. et al. Phase transitions in spin-crossover thin films probed by graphene transport measurements. Nano Lett. 17, 186–193 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  43. 43.

    Geest, E. P. et al. Contactless spin switch sensing by chemo‐electric gating of graphene. Adv. Mater. 32, 1903575–1903579 (2020).

    Article  CAS  Google Scholar 

  44. 44.

    Konstantinov, N. et al. Electrical read-out of light-induced spin transition in thin film spin crossover/graphene heterostructures. J. Mater. Chem. C 9, 2712–2720 (2021).

    CAS  Article  Google Scholar 

  45. 45.

    Titos-Padilla, S., Herrera, J. M., Chen, X.-W., Delgado, J. J. & Colacio, E. Bifunctional hybrid SiO2 nanoparticles showing synergy between core spin crossover and shell luminescence properties. Angew. Chem. Int. Ed. 50, 3290–3293 (2011).

    CAS  Article  Google Scholar 

  46. 46.

    Herrera, J. M. et al. Studies on bifunctional Fe(II)-triazole spin crossover nanoparticles: time-dependent luminescence, surface grafting and the effect of a silica shell and hydrostatic pressure on the magnetic properties. J. Mater. Chem. C 3, 7819–7829 (2015).

    CAS  Article  Google Scholar 

  47. 47.

    Giménez-Marqués, M., García-Sanz de Larrea, M. L. & Coronado, E. Unravelling the chemical design of spin-crossover nanoparticles based on iron(II)-triazole coordination polymers: towards a control of the spin transition. J. Mater. Chem. C 3, 7946–7953 (2015).

    Article  CAS  Google Scholar 

  48. 48.

    Torres-Cavanillas, R. et al. Downsizing of robust Fe-triazole@SiO2 spin-crossover nanoparticles with ultrathin shells. Dalton Trans. 48, 15465–15469 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  49. 49.

    Ulman, A. Formation and structure of self-assembled monolayers. Chem. Rev. 96, 1533–1554 (1996).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  50. 50.

    Joensen, P., Frindt, R. F. & Morrison, S. R. Single-layer MoS2. Mat. Res. Bull. 21, 457–461 (1986).

    CAS  Article  Google Scholar 

  51. 51.

    Leng, K. et al. Phase restructuring in transition metal dichalcogenides for highly stable energy storage. ACS Nano 10, 9208–9215 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  52. 52.

    Morant-Giner, M. et al. Prussian Blue@MoS2 layer composites as highly efficient cathodes for sodium- and potassium-ion batteries. Adv. Funct. Mater. 28, 1706125 (2017).

    Article  CAS  Google Scholar 

  53. 53.

    Voiry, D. et al. Covalent functionalization of monolayered transition metal dichalcogenides by phase engineering. Nat. Chem. 7, 45–49 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  54. 54.

    Saito, R., Tatsumi, Y., Huang, S., Ling, X. & Dresselhaus, M. S. Raman spectroscopy of transition metal dichalcogenides. J. Phys. Condens. Matter 28, 353002 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  55. 55.

    Pramoda, K. et al. Nanocomposites of C3N4 with layers of MoS2 and nitrogenated RGO, obtained by covalent cross-linking: synthesis, characterization, and HER activity. ACS Appl. Mater. Interfaces 9, 10664–10672 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  56. 56.

    Pramoda, K., Gupta, U., Ahmad, I., Kumar, R. & Rao, C. N. R. Assemblies of covalently cross-linked nanosheets of MoS2 and of MoS2-RGO: synthesis and novel properties. J. Mater. Chem. A 4, 8989–8994 (2016).

    CAS  Article  Google Scholar 

  57. 57.

    Dugay, J. et al. Spin switching in electronic devices based on 2D assemblies of spin-crossover nanoparticles. Adv. Mater. 27, 1288–1293 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  58. 58.

    Dugay, J. et al. Charge mobility and dynamics in spin-crossover nanoparticles studied by time-resolved microwave conductivity. J. Phys. Chem. Lett. 9, 5672–5678 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  59. 59.

    Rotaru, A. et al. Nano-electromanipulation of spin crossover nanorods: towards switchable nanoelectronic devices. Adv. Mater. 25, 1745–1749 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  60. 60.

    Molnár, G., Rat, S., Salmon, L., Nicolazzi, W. & Bousseksou, A. Spin crossover nanomaterials: from fundamental concepts to devices. Adv. Mater. 30, 17003862 (2018).

    Article  CAS  Google Scholar 

  61. 61.

    Roldán, R., Castellanos-Gomez, A., Cappelluti, E. & Guinea, F. Strain engineering in semiconducting two-dimensional crystals. J. Phys. Condens. Matter 27, 313201 (2015).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  62. 62.

    Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2. Nano Lett. 10, 1271–1275 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  63. 63.

    McCreary, K. M., Hanbicki, A. T., Sivaram, S. V. & Jonker, B. T. A- and B-exciton photoluminescence intensity ratio as a measure of sample quality for transition metal dichalcogenide monolayers. APL Mater. 6, 111106 (2018).

    Article  CAS  Google Scholar 

  64. 64.

    Pető, J. et al. Moderate strain induced indirect bandgap and conduction electrons in MoS2 single layers. npj 2D Mater. Appl. 3, 39 (2019).

    Article  CAS  Google Scholar 

  65. 65.

    Guillaume, F. et al. Photoswitching of the spin crossover polymeric material [Fe(Htrz)2(trz)](BF4) under continuous laser irradiation in a Raman scattering experiment. Chem. Phys. Lett. 604, 105–109 (2014).

    CAS  Article  Google Scholar 

  66. 66.

    Korn, T., Heydrich, S., Hirmer, M., Schmutzler, J. & Schüller, C. Low-temperature photocarrier dynamics in monolayer MoS2. Appl. Phys. Lett. 99, 102109 (2011).

    Article  CAS  Google Scholar 

  67. 67.

    Lefter, C. et al. Dielectric and charge transport properties of the spin crossover complex [Fe(Htrz)2(trz)](BF4). Phys. Status Solidi RRL 8, 191–193 (2013).

    Article  CAS  Google Scholar 

  68. 68.

    Chaves, A. et al. Bandgap engineering of two-dimensional semiconductor materials. npj 2D Mater. Appl. 4, 29 (2020).

    CAS  Article  Google Scholar 

  69. 69.

    Hui, Y. Y. et al. Exceptional tunability of band energy in a compressively strained trilayer MoS2 sheet. ACS Nano 7, 7126–7131 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  70. 70.

    Gant, P. et al. A strain tunable single-layer MoS2 photodetector. Mater. Today 27, 8–13 (2019).

    CAS  Article  Google Scholar 

  71. 71.

    Prins, F., Monrabal-Capilla, M., Osorio, E. A., Coronado, E. & Van Der Zant, H. S. J. Room-temperature electrical addressing of a bistable spin-crossover molecular system. Adv. Mater. 23, 1545–1549 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  72. 72.

    Torres-Cavanillas, R. et al. Design of bistable gold@spin-crossover core–shell nanoparticles showing large electrical responses for the spin switching. Adv. Mater. 31, 1900039 (2019).

    Article  CAS  Google Scholar 

  73. 73.

    Holovchenko, A. et al. Near room-temperature memory devices based on hybrid spin-crossover@SiO2 nanoparticles coupled to single-layer graphene nanoelectrodes. Adv. Mater. 28, 7228–7233 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  74. 74.

    Coronado, E. Molecular magnetism: from chemical design to spin control in molecules, materials and devices. Nat. Rev. Mater. 5, 87–104 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from the EU (ERC-Advanced Grant 78822-MOL-2D and FET-OPEN COSMICS 766726), the Spanish MICINN (PID2020-117152RB-I00, PID2020-117264GB-I00, Excellence Unit María de Maeztu CEX2019-000919-M, RTI2018-098568-A-I00 to S.T. and EQC2018-004888-P, co-financed by FEDER) and the Generalitat Valenciana (Prometeo Program of Excellence: PROMETEO/2017/066, PO FEDER Program IDIFEDER/2018/061 and IDIFEDER/2020/063 and the GentT Program CIDEGENT/2018/005 to J.C.-F. and SEJI/2020/036 to M.G.-M.). M.M.-G. thanks the Spanish MECD for the award of a FPU Grant. The Spanish MICINN is also acknowledged for a predoctoral fellowship (to R.T.-C.), two Juan de la Cierva Incorporación postdoctoral Grants (IJCI-2016-27441 to S.C.-S. and IJCI-2017-33538 to M.G.) and two Ramón y Cajal Contracts (RYC-2016-19817 to S.T. and RYC2019-027902-I to M.G.-M.). M.G.-M. thanks ‘la Caixa’ Foundation for support (LCF/BQ/PI19/11690022). The authors are grateful to J. M. Herrera from the Department of Inorganic Chemistry (Universidad de Granada) for his helpful discussion on the core–shell SCO nanoparticles.

Author information

Affiliations

Authors

Contributions

R.T.-C. and M.M.-G. contributed equally to this work. R.T.-C. was responsible for the design, synthesis and characterization of the new heterostructure and was involved in all the experimental measurements, the discussion and the preparation of the manuscript. M.M.-G. was in charge of the preparation of the exfoliated material and helped with all the characterization steps of the new system. M.G. was in charge of all the transport characterizations, in which G.E.-A., J.D. and S.T. were involved. S.C.-S. helped with the discussion and theoretical interpretation of the observed properties. M.G.-M. contributed to the SCO-NPs preparation and the discussion and interpretation of the results. J.C.-F. was involved in the PL experiments and their interpretation. A.F.-A. designed the work and was involved in the development and coordination of all the experimental parts, discussion of the results and preparation of the manuscript. E.C. supervised all the work and the preparation of the manuscript. All the authors revised and contributed to the presented manuscript.

Corresponding authors

Correspondence to Alicia Forment-Aliaga or Eugenio Coronado.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Chemistry thanks Birgit Weber and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Magnetic characterization of the composites.

a,b, Thermal variation of the χMT product for the SCO/MoS2-1 (a) and SCO/MoS2-2a (b). In both cases, the χMT value increases at the transition temperature from LS to HS, ulteriorly recovering its initial value with the reverse transition supporting the integrity of the SCO-NPs in the composites. χM, molar magnetic susceptibility.

Extended Data Fig. 2 Temperature-dependent photoluminescence of the composites.

a-d, Evolution of the PL emission maximum with the temperature of SCO/MoS2-1 (left panels) and SCO/MoS2-2a (right panels) during the heating (a,b) and the cooling (c,d) processes. The excitation power was fixed at 0.08 mW/µm2 to avoid thermal interferences. At any temperature between spin transition temperatures (380-340 K), the A peak position depends on the SCO-NPs spin state for both samples (that is, on the heating or cooling process), shifting to lower values in the HS (cooling process). This effect is observed to be more substantial for SCO/MoS2-1.

Extended Data Fig. 3 SCO/MoS2-2 optical response.

a, PL spectra of SCO/MoS2-2a at LS (red line, heating), and HS states (blue line, cooling), taken at 373 K and 0.08 mW. Clearly the HS state displays an A peak located at lower energy due to the strain applied by the SCO-NPs with increased volume after spin transition. b, PL shift as a function of the temperature (red dots, heating and blue dots, cooling). The position of the A peak of the MoS2 reflects the hysteretical behaviour of the SCO-NPs spin transition. Error bars represent the standard deviation calculated from at least three different areas measured at each temperature.

Source data

Extended Data Fig. 4 Temperature-dependent Raman spectra of the SCO-NPs.

a,b, Raman spectra of the SCO-NPs at different temperatures during the heating (a) and cooling (b) processes. The Raman spectra change depending on the SCO-NPs spin state.

Extended Data Fig. 5 Temperature-dependent photoluminescence of the CE-MoS2(2H).

a,b, Evolution of the PL emission maximum with the temperature of phase converted CE-MoS2(2H) during the heating (a) and the cooling (b) processes. c, PL maximum shifts as a function of temperature (red dots, heating and blue dots, cooling).The position of the PL maximum exhibits a linear displacement with the temperature. Processed error bars represent standard deviation calculated from at least three different areas measured at each temperature. Excitation power at 0.08 mW/µm2.

Source data

Extended Data Fig. 6 Raman spectra of the SCO-NPs upon light irradiation.

SCO-NPs Raman spectra at different conditions. a, Temperature: 363 K and laser intensity 0.08 mW (inside SCO-NPs hysteresis between spin transition temperatures), during the heating (LS, purple) and the cooling (HS, yellow) processes. b, At room temperature with two different laser intensities: 0.08 mW (purple) and 0.8 mW (yellow), exhibiting the typical spectrum of the LS and HS states, respectively.

Supplementary information

Supplementary Information

Supplementary Figs. 1–15, Discussion and Tables 1–7.

Supplementary Video 1

Volume modulation as a function of the temperature of the spin-crossover core-shell nanoparticles (core: [Fe(Htrz)2(trz)](BF4); shell: SiO2).

Supplementary Data

Source measured data for histograms.

Source data

Source Data Fig. 5b

Source measured data for statistical analysis.

Source Data Extended Data Fig. 3b

Source measured data for statistical analysis.

Source Data Extended Data Fig. 5c

Source measured data for statistical analysis.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Torres-Cavanillas, R., Morant-Giner, M., Escorcia-Ariza, G. et al. Spin-crossover nanoparticles anchored on MoS2 layers for heterostructures with tunable strain driven by thermal or light-induced spin switching. Nat. Chem. 13, 1101–1109 (2021). https://doi.org/10.1038/s41557-021-00795-y

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing