Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Dual-function enzyme catalysis for enantioselective carbon–nitrogen bond formation

Abstract

Chiral amines can be made by insertion of a carbene into an N–H bond using two-catalyst systems that combine a transition metal-based carbene-transfer catalyst and a chiral proton-transfer catalyst to enforce stereocontrol. Haem proteins can effect carbene N–H insertion, but asymmetric protonation in an active site replete with proton sources is challenging. Here we describe engineered cytochrome P450 enzymes that catalyse carbene N–H insertion to prepare biologically relevant α-amino lactones with high activity and enantioselectivity (up to 32,100 total turnovers, >99% yield and 98% e.e.). These enzymes serve as dual-function catalysts, inducing carbene transfer and promoting the subsequent proton transfer with excellent stereoselectivity in a single active site. Computational studies uncover the detailed mechanism of this new-to-nature enzymatic reaction and explain how active-site residues accelerate this transformation and provide stereocontrol.

Your institute does not have access to this article

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Asymmetric carbene N–H insertion using small-molecule catalysts and enzymes.
Fig. 2: Screen for enzymatic N–H insertion with a haem protein collection and identification of A264S as the key mutation for achieving high activity and selectivity.
Fig. 3: Computational modelling elucidates the origins of enantioselectivity of carbene transfer into N–H bonds catalysed by P411-L6.
Fig. 4: Enantioselective carbene N–H insertion of secondary and primary anilines and aliphatic amines.
Fig. 5: Investigation of the catalytic efficiency of L7_FL and scale-up of asymmetric N–H insertion reactions.

Data availability

All data necessary to support the paper’s conclusions are available in the main text and the Supplementary Information. X-ray crystal structures of 3e (CCDC 2065484) and 3l (CCDC 2065489) are available free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. Plasmids encoding the enzymes reported in this study are available for research purposes from F.H.A. under a material transfer agreement with the California Institute of Technology. Source data are provided with this paper.

References

  1. Hili, R. & Yudin, A. K. Making carbon–nitrogen bonds in biological and chemical synthesis. Nat. Chem. Biol. 2, 284–287 (2006).

    Article  CAS  Google Scholar 

  2. Froidevaux, V., Negrell, C., Caillol, S., Pascault, J.-P. & Boutevin, B. Biobased amines: from synthesis to polymers; present and future. Chem. Rev. 116, 14181–14224 (2016).

    Article  CAS  Google Scholar 

  3. Bariwal, J. & Van der Eycken, E. C–N bond forming cross-coupling reactions: an overview. Chem. Soc. Rev. 42, 9283–9303 (2013).

    Article  CAS  Google Scholar 

  4. Kim, J. E., Choi, S., Balamurugan, M., Jang, J. H. & Nam, K. T. Electrochemical C–N bond formation for sustainable amine synthesis. Trends Chem. 2, 1004–1019 (2020).

    Article  CAS  Google Scholar 

  5. Kohls, H., Steffen-Munsberg, F. & Höhne, M. Recent achievements in developing the biocatalytic toolbox for chiral amine synthesis. Curr. Opin. Chem. Biol. 19, 180–192 (2014).

    Article  CAS  Google Scholar 

  6. Hauer, B. Embracing nature’s catalysts: a viewpoint on the future of biocatalysis. ACS Catal. 10, 8418–8427 (2020).

    Article  CAS  Google Scholar 

  7. Wu, S., Snajdrova, R., Moore, J. C., Baldenius, K. & Bornscheuer, U. T. Biocatalysis: enzymatic synthesis for industrial applications. Angew. Chem. Int. Ed. 60, 88–119 (2021).

    Article  CAS  Google Scholar 

  8. Doyle, M. P. Catalytic methods for metal carbene transformations. Chem. Rev. 86, 919–939 (1986).

    Article  CAS  Google Scholar 

  9. Liu, B., Zhu, S.-F., Zhang, W., Chen, C. & Zhou, Q.-L. Highly enantioselective insertion of carbenoids into N−H bonds catalyzed by copper complexes of chiral spiro bisoxazolines. J. Am. Chem. Soc. 129, 5834–5835 (2007).

    Article  CAS  Google Scholar 

  10. Lee, E. C. & Fu, G. C. Copper-catalyzed asymmetric N−H insertion reactions: couplings of diazo compounds with carbamates to generate α-amino acids. J. Am. Chem. Soc. 129, 12066–12067 (2007).

    Article  CAS  Google Scholar 

  11. Hou, Z. et al. Highly enantioselective insertion of carbenoids into N–H bonds catalyzed by copper(I) complexes of binol derivatives. Angew. Chem. Int. Ed. 49, 4763–4766 (2010).

    Article  CAS  Google Scholar 

  12. Arredondo, V., Hiew, S. C., Gutman, E. S., Premachandra, I. D. U. A. & Van Vranken, D. L. Enantioselective palladium-catalyzed carbene insertion into the N−H bonds of aromatic heterocycles. Angew. Chem. Int. Ed. 56, 4156–4159 (2017).

    Article  CAS  Google Scholar 

  13. Wang, Z. J., Peck, N. E., Renata, H. & Arnold, F. H. Cytochrome P450-catalyzed insertion of carbenoids into N–H bonds. Chem. Sci. 5, 598–601 (2014).

    Article  CAS  Google Scholar 

  14. Sreenilayam, G. & Fasan, R. Myoglobin-catalyzed intermolecular carbene N–H insertion with arylamine substrates. Chem. Commun. 51, 1532–1534 (2015).

    Article  CAS  Google Scholar 

  15. Steck, V., Carminati, D. M., Johnson, N. R. & Fasan, R. Enantioselective synthesis of chiral amines via biocatalytic carbene N–H insertion. ACS Catal. 10, 10967–10977 (2020).

    Article  CAS  Google Scholar 

  16. Steck, V., Sreenilayam, G. & Fasan, R. Selective functionalization of aliphatic amines via myoglobin-catalyzed carbene N–H insertion. Synlett 31, 224–229 (2020).

    Article  CAS  Google Scholar 

  17. Coelho, P. S., Brustad, E. M., Kannan, A. & Arnold, F. H. Olefin cyclopropanation via carbene transfer catalyzed by engineered cytochrome P450 enzymes. Science 339, 307–310 (2013).

    Article  CAS  Google Scholar 

  18. Zhang, R. K. et al. Enzymatic assembly of carbon–carbon bonds via iron-catalysed sp3 C–H functionalization. Nature 565, 67–72 (2019).

    Article  CAS  Google Scholar 

  19. Liu, Z. & Arnold, F. H. New-to-nature chemistry from old protein machinery: carbene and nitrene transferases. Curr. Opin. Biotechnol. 69, 43–51 (2021).

    Article  CAS  Google Scholar 

  20. Chen, K. & Arnold, F. H. Engineering new catalytic activities in enzymes. Nat. Catal. 3, 203–213 (2020).

    Article  CAS  Google Scholar 

  21. Ren, Y.-Y., Zhu, S.-F. & Zhou, Q.-L. Chiral proton-transfer shuttle catalysts for carbene insertion reactions. Org. Biomol. Chem. 16, 3087–3094 (2018).

    Article  CAS  Google Scholar 

  22. Li, M.-L., Yu, J.-H., Li, Y.-H., Zhu, S.-F. & Zhou, Q.-L. Highly enantioselective carbene insertion into N–H bonds of aliphatic amines. Science 366, 990–994 (2019).

    Article  CAS  Google Scholar 

  23. Sharon, D. A., Mallick, D., Wang, B. & Shaik, S. Computation sheds insight into iron porphyrin carbenes’ electronic structure, formation, and N–H insertion reactivity. J. Am. Chem. Soc. 138, 9597–9610 (2016).

    Article  CAS  Google Scholar 

  24. Pavlović, D. et al. Synthesis and structure–activity relationships of α-amino-γ-lactone ketolides: a novel class of macrolide antibiotics. ACS Med. Chem. Lett. 5, 1133–1137 (2014).

    Article  CAS  Google Scholar 

  25. DeAngelis, A., Dmitrenko, O. & Fox, J. M. Rh-catalyzed intermolecular reactions of cyclic α-diazocarbonyl compounds with selectivity over tertiary C–H bond migration. J. Am. Chem. Soc. 134, 11035–11043 (2012).

    Article  CAS  Google Scholar 

  26. Sattely, E. S., Meek, S. J., Malcolmson, S. J., Schrock, R. R. & Hoveyda, A. H. Design and stereoselective preparation of a new class of chiral olefin metathesis catalysts and application to enantioselective synthesis of quebrachamine: catalyst development inspired by natural product synthesis. J. Am. Chem. Soc. 131, 943–953 (2009).

    Article  CAS  Google Scholar 

  27. Chen, K., Zhang, S.-Q., Brandenberg, O. F., Hong, X. & Arnold, F. H. Alternate heme ligation steers activity and selectivity in engineered cytochrome P450-catalyzed carbene-transfer reactions. J. Am. Chem. Soc. 140, 16402–16407 (2018).

    Article  CAS  Google Scholar 

  28. Zhou, A. Z., Chen, K. & Arnold, F. H. Enzymatic lactone-carbene C–H insertion to build contiguous chiral centers. ACS Catal. 10, 5393–5398 (2020).

    Article  CAS  Google Scholar 

  29. Chen, K. et al. Engineered cytochrome c-catalyzed lactone-carbene B–H insertion. Synlett 30, 378–382 (2019).

    Article  CAS  Google Scholar 

  30. Coelho, P. S. et al. A serine-substituted P450 catalyzes highly efficient carbene transfer to olefins in vivo. Nat. Chem. Biol. 9, 485–487 (2013).

    Article  CAS  Google Scholar 

  31. Brandenberg, O. F., Chen, K. & Arnold, F. H. Directed evolution of a cytochrome P450 carbene transferase for selective functionalization of cyclic compounds. J. Am. Chem. Soc. 141, 8989–8995 (2019).

    Article  CAS  Google Scholar 

  32. Garcia-Borràs, M. et al. Origin and control of chemoselectivity in cytochrome c catalyzed carbene transfer into Si–H and N–H bonds. J. Am. Chem. Soc. 143, 7114–7123 (2021).

    Article  CAS  Google Scholar 

  33. Khade, R. L. & Zhang, Y. Catalytic and biocatalytic iron porphyrin carbene formation: effects of binding mode, carbene substituent, porphyrin substituent, and protein axial ligand. J. Am. Chem. Soc. 137, 7560–7563 (2015).

    Article  CAS  Google Scholar 

  34. Kalita, S., Shaik, S., Kisan, H. K. & Dubey, K. D. A paradigm shift in the catalytic cycle of P450: the preparatory choreography during O2 binding and origins of the necessity for two protonation pathways. ACS Catal. 10, 11481–11492 (2020).

    Article  CAS  Google Scholar 

  35. Fisher, D. J. & Hayes, A. L. Mode of action of the systemic fungicides furalaxyl, metalaxyl and ofurace. Pestic. Sci. 13, 330–339 (1982).

    Article  CAS  Google Scholar 

  36. Kunz, W. & Kristinsson, H. Bildung von 4-, 5- und 6gliedrigen heterocyclen durch ambidoselektive ringschlüsse von enolat-ionen. Helv. Chim. Acta 62, 872–881 (1979).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation Division of Molecular and Cellular Biosciences (grant 2016137 to F.H.A.), the US Army Research Office Institute for Collaborative Biotechnologies (cooperative agreement W911NF-19-2-0026 to F.H.A.), the Spanish Ministry of Science and Innovation MICINN (grant PID2019-111300GA-I00 to M.G.-B.) and the Generalitat de Catalunya AGAUR Beatriu de Pinós H2020 MSCA-Cofund (2018-BP-00204 project to M.G.-B.). K.C. thanks the Resnick Sustainability Institute at Caltech for fellowship support. The computer resources at MinoTauro and the Barcelona Supercomputing Center BSC-RES are acknowledged (RES-QSB-2020-2-0016). We thank D. C. Miller, S. Brinkmann-Chen, R. Lal and T. Zeng for helpful discussions and comments on the manuscript. We further thank M. Shahgholi for high-resolution mass spectrometry analysis and M. K. Takase for X-ray crystallographic analysis.

Author information

Authors and Affiliations

Authors

Contributions

Z.L. and K.C. conceived and designed the overall project with F.H.A. providing guidance. Z.L. and A.Z.Z. designed and performed the initial screening of haem proteins and the substrate scope study. C.C.-T. and M.G.-B. carried out the computational studies. Z.L., K.C., M.G.-B. and F.H.A. wrote the manuscript with the input of all authors.

Corresponding authors

Correspondence to Kai Chen, Marc Garcia-Borràs or Frances H. Arnold.

Ethics declarations

Competing interests

K.C., Z.L. and A.Z.Z. are inventors on a US Patent Application (invention title, Diverse Carbene Transferase Enzyme Catalysts Derived from a P450 Enzyme; application no., 17/200,394) filed by the California Institute of Technology, which covers lactone-carbene N–H insertion with engineered P450 enzymes. The patent was filed on 12 March 2021. The remaining authors declare no competing interests.

Additional information

Peer review information Nature Chemistry thanks Sabine Flitsch, Sason Shaik and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–21, Tables 1–17, experimental data, procedural details, synthesis and characterization data, NMR spectra, X-ray crystallographic data and computational modelling data.

Supplementary Data 1

crystallographic data of compound 3e; CCDC 2065484.

Supplementary Data 2

crystallographic data of compound 3l; CCDC 2065489.

Source data

Source Data Fig. 2

Statistical source data of 40 previously reported variants.

Source Data Fig. 4

Statistical source data of substrate scope.

Source Data Fig. 5

Statistical source data of OD test.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Calvó-Tusell, C., Zhou, A.Z. et al. Dual-function enzyme catalysis for enantioselective carbon–nitrogen bond formation. Nat. Chem. 13, 1166–1172 (2021). https://doi.org/10.1038/s41557-021-00794-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-021-00794-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing