Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Oxidation of sulfur dioxide by nitrogen dioxide accelerated at the interface of deliquesced aerosol particles

Abstract

Although the multiphase chemistry of SO2 in aerosol particles is of great importance to air quality under polluted haze conditions, a fundamental understanding of the pertinent mechanisms and kinetics is lacking. In particular, there is considerable debate on the importance of NO2 in the oxidation of SO2 in aerosol particles. Here experiments with atmospherically relevant deliquesced particles at buffered pH values of 4–5 show that the effective rate constant for the reaction of NO2 with SO32− ((1.4 ± 0.5) × 1010 M−1 s−1) is more than three orders of magnitude larger than the value in dilute solutions. An interfacial reaction at the surface of aerosol particles probably drives the very fast kinetics. Our results indicate that oxidation of SO2 by NO2 at aerosol surfaces may be an important source of sulfate aerosols under polluted haze conditions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Time evolution of gas-phase and aerosol-phase species for an MA aerosol seed experiment.
Fig. 2: Reactions between SO2 and NO2 in bulk solutions and relationship between kexp and hydrogen ion activity.
Fig. 3: Illustration of an interfacial mechanism of SO2 oxidation by NO2 in deliquesced aerosol particles.
Fig. 4: Sulfate formation rates of NO2 and H2O2 pathways in aerosol particles under winter haze conditions.

Data availability

All data are available in the main paper and the Supplementary Information files. Source data files are provided for Figs. 1, 2 and 4 and for Extended Data Figs. 16. Source data are provided with this paper.

References

  1. 1.

    Su, H., Cheng, Y. & Pöschl, U. New multiphase chemical processes influencing atmospheric aerosols, air quality, and climate in the Anthropocene. Acc. Chem. Res. 53, 2034–2043 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. 2.

    Wang, G. et al. Persistent sulfate formation from London fog to Chinese haze. Proc. Natl Acad. Sci. USA 113, 13630–13635 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. 3.

    Wang, Y. et al. Enhanced sulfate formation during China’s severe winter haze episode in January 2013 missing from current models. J. Geophys. Res. Atmos. https://doi.org/10.1002/2013JD021426 (2014).

  4. 4.

    Cheng, Y. et al. Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China. Sci. Adv. https://doi.org/10.1126/sciadv.1601530 (2016).

  5. 5.

    Huang, R.-J. et al. High secondary aerosol contribution to particulate pollution during haze events in China. Nature 514, 218–222 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  6. 6.

    Guo, S. et al. Elucidating severe urban haze formation in China. Proc. Natl Acad. Sci. USA 111, 17373–17378 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Zhang, R. et al. Formation of urban fine particulate matter. Chem. Rev. 115, 3803–3855 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  8. 8.

    Zheng, B. et al. Heterogeneous chemistry: a mechanism missing in current models to explain secondary inorganic aerosol formation during the January 2013 haze episode in North China. Atmos. Chem. Phys. 15, 2031–2049 (2015).

    CAS  Article  Google Scholar 

  9. 9.

    Ye, C. et al. High H2O2 concentrations observed during haze periods during the winter in Beijing: importance of H2O2 oxidation in sulfate formation. Environ. Sci. Technol. Lett. 5, 757–763 (2018).

    CAS  Article  Google Scholar 

  10. 10.

    Hung, H.-M., Hsu, M.-N. & Hoffmann, M. R. Quantification of SO2 oxidation on interfacial surfaces of acidic micro-droplets: implication for ambient sulfate formation. Environ. Sci. Technol. 52, 9079–9086 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  11. 11.

    Liu, T., Clegg, S. L. & Abbatt, J. P. D. Fast oxidation of sulfur dioxide by hydrogen peroxide in deliquesced aerosol particles. Proc. Natl Acad. Sci. USA 117, 1354–1359 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Li, L., Hoffmann, M. R. & Colussi, A. J. Role of nitrogen dioxide in the production of sulfate during Chinese haze-aerosol episodes. Environ. Sci. Technol. 52, 2686–2693 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  13. 13.

    Gen, M., Zhang, R., Huang, D. D., Li, Y. & Chan, C. K. Heterogeneous oxidation of SO2 in sulfate production during nitrate photolysis at 300 nm: effect of pH, relative humidity, irradiation intensity, and the presence of organic compounds. Environ. Sci. Technol. 53, 8757–8766 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. 14.

    Wang, X. et al. Atmospheric photosensitization: a new pathway for sulfate formation. Environ. Sci. Technol. 54, 3114–3120 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  15. 15.

    Zhang, F. et al. An unexpected catalyst dominates formation and radiative forcing of regional haze. Proc. Natl Acad. Sci. USA 117, 3960–3966 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Ma, T. et al. Contribution of hydroxymethanesulfonate (HMS) to severe winter haze in the North China Plain. Atmos. Chem. Phys. 20, 5887–5897 (2020).

    Article  CAS  Google Scholar 

  17. 17.

    Li, J. et al. Stable sulfur isotopes revealed a major role of transition-metal ion-catalyzed SO2 oxidation in haze episodes. Environ. Sci. Technol. 54, 2626–2634 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  18. 18.

    Ge, S. et al. Abundant NH3 in China enhances atmospheric HONO production by promoting the heterogeneous reaction of SO2 with NO2. Environ. Sci. Technol. 53, 14339–14347 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  19. 19.

    Song, S. et al. Fine-particle pH for Beijing winter haze as inferred from different thermodynamic equilibrium models. Atmos. Chem. Phys. 18, 7423–7438 (2018).

    CAS  Article  Google Scholar 

  20. 20.

    Guo, H., Weber, R. J. & Nenes, A. High levels of ammonia do not raise fine particle pH sufficiently to yield nitrogen oxide-dominated sulfate production. Sci Rep. 7, 12109 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  21. 21.

    Liu, M. et al. Fine particle pH during severe haze episodes in northern China. Geophys. Res. Lett. 44, 5213–5221 (2017).

    CAS  Article  Google Scholar 

  22. 22.

    Lee, Y. & Schwartz, S. E. in Precipitation Scavenging, Dry Deposition and Resuspension (eds Pruppacher, H. R., Semonin, R. G. and Slinn, W. G. N.) Vol. 1, 453–470 (Elsevier, 1983).

  23. 23.

    Clifton, C. L., Altstein, N. & Huie, R. E. Rate constant for the reaction of nitrogen dioxide with sulfur(IV) over the pH range 5.3–13. Environ. Sci. Technol. 22, 586–589 (1988).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  24. 24.

    Bzdek, B. R., Reid, J. P. & Cotterell, M. I. Open questions on the physical properties of aerosols. Commun. Chem. 3, 105 (2020).

    CAS  Article  Google Scholar 

  25. 25.

    Chen, T. et al. Enhancement of aqueous sulfate formation by the coexistence of NO2/NH3 under high ionic strengths in aerosol water. Environ. Pollut. 252, 236–244 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. 26.

    Wang, G. et al. Particle acidity and sulfate production during severe haze events in China cannot be reliably inferred by assuming a mixture of inorganic salts. Atmos. Chem. Phys. 18, 10123–10132 (2018).

    CAS  Article  Google Scholar 

  27. 27.

    Wang, W. et al. Sulfate formation is dominated by manganese-catalyzed oxidation of SO2 on aerosol surfaces during haze events. Nat. Commun. 12, 1993 (2021).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Finlayson-Pitts, B. J., Wingen, L. M., Sumner, A. L., Syomin, D. & Ramazan, K. A. The heterogeneous hydrolysis of NO2 in laboratory systems and in outdoor and indoor atmospheres: an integrated mechanism. Phys. Chem. Chem. Phys. 5, 223–242 (2003).

    CAS  Article  Google Scholar 

  29. 29.

    Yang, J. et al. Unraveling a new chemical mechanism of missing sulfate formation in aerosol haze: gaseous NO2 with aqueous HSO3/SO32–. J. Am. Chem. Soc. 141, 19312–19320 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  30. 30.

    Wexler, A. S. & Clegg, S. L. Atmospheric aerosol models for systems including the ions H+, NH4+, Na+, SO42−, NO3, Cl, Br, and H2O. J. Geophys. Res. Atmos. 107, ACH 14-11–ACH 14-14 (2002).

    Article  Google Scholar 

  31. 31.

    Aerosol Thermodynamics Model (E-AIM, 2021); http://www.aim.env.uea.ac.uk/aim/aim.php

  32. 32.

    Canagaratna, M. R. et al. Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer. Mass Spectrom. Rev. 26, 185–222 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  33. 33.

    Drexler, C., Elias, H., Fecher, B. & Wannowius, K. J. Kinetic investigation of sulfur(IV) oxidation by peroxo compounds R–OOH in aqueous solution. Fresenius J. Anal. Chem. 340, 605–615 (1991).

    CAS  Article  Google Scholar 

  34. 34.

    Oblath, S. B., Markowitz, S. S., Novakov, T. & Chang, S. G. Kinetics of the initial reaction of nitrite ion in bisulfite solutions. J. Phys. Chem. 86, 4853–4857 (1982).

    CAS  Article  Google Scholar 

  35. 35.

    Oblath, S. B., Markowitz, S. S., Novakov, T. & Chang, S. G. Kinetics of the formation of hydroxylamine disulfonate by reaction of nitrite with sulfites. J. Phys. Chem. 85, 1017–1021 (1981).

    CAS  Article  Google Scholar 

  36. 36.

    Takeuchi, H., Ando, M. & Kizawa, N. Absorption of nitrogen oxides in aqueous sodium sulfite and bisulfite solutions. Ind. Eng. Chem. Proc. Des. Dev. 16, 303–308 (1977).

    CAS  Article  Google Scholar 

  37. 37.

    Spindler, G. et al. Wet annular denuder measurements of nitrous acid: laboratory study of the artefact reaction of NO2 with S(IV) in aqueous solution and comparison with field measurements. Atmos. Environ. 37, 2643–2662 (2003).

    CAS  Article  Google Scholar 

  38. 38.

    Shen, C. H. & Rochelle, G. T. Nitrogen dioxide absorption and sulfite oxidation in aqueous sulfite. Environ. Sci. Technol. 32, 1994–2003 (1998).

    CAS  Article  Google Scholar 

  39. 39.

    Mertes, S. & Wahner, A. Uptake of nitrogen dioxide and nitrous acid on aqueous surfaces. J. Phys. Chem. 99, 14000–14006 (1995).

    CAS  Article  Google Scholar 

  40. 40.

    Jayne, J. T., Davidovits, P., Worsnop, D. R., Zahniser, M. S. & Kolb, C. E. Uptake of sulfur dioxide(G) by aqueous surfaces as a function of pH: the effect of chemical reaction at the interface. J. Phys. Chem. 94, 6041–6048 (1990).

    CAS  Article  Google Scholar 

  41. 41.

    Yabushita, A. et al. Anion-catalyzed dissolution of NO2 on aqueous microdroplets. J. Phys. Chem. A 113, 4844–4848 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  42. 42.

    Murdachaew, G., Varner, M. E., Phillips, L. F., Finlayson-Pitts, B. J. & Gerber, R. B. Nitrogen dioxide at the air–water interface: trapping, absorption, and solvation in the bulk and at the surface. Phys. Chem. Chem. Phys. 15, 204–212 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  43. 43.

    Shao, J. et al. Heterogeneous sulfate aerosol formation mechanisms during wintertime Chinese haze events: air quality model assessment using observations of sulfate oxygen isotopes in Beijing. Atmos. Chem. Phys. 19, 6107–6123 (2019).

    CAS  Article  Google Scholar 

  44. 44.

    Wang, J. et al. Fast sulfate formation from oxidation of SO2 by NO2 and HONO observed in Beijing haze. Nat. Commun. 11, 2844 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. 45.

    Song, S. et al. Thermodynamic modeling suggests declines in water uptake and acidity of inorganic aerosols in Beijing winter haze events during 2014/2015–2018/2019. Environ. Sci. Technol. Lett. 6, 752–760 (2019).

    CAS  Article  Google Scholar 

  46. 46.

    Xue, J. et al. Efficient control of atmospheric sulfate production based on three formation regimes. Nat. Geosci. 12, 977–982 (2019).

    CAS  Article  Google Scholar 

  47. 47.

    Zheng, G. et al. Multiphase buffer theory explains contrasts in atmospheric aerosol acidity. Science 369, 1374–1377 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  48. 48.

    Matthew, B. M., Middlebrook, A. M. & Onasch, T. B. Collection efficiencies in an Aerodyne aerosol mass spectrometer as a function of particle phase for laboratory generated aerosols. Aerosol Sci. Technol. 42, 884–898 (2008).

    CAS  Article  Google Scholar 

  49. 49.

    Roscioli, J. R., Zahniser, M. S., Nelson, D. D., Herndon, S. C. & Kolb, C. E. New approaches to measuring sticky molecules: improvement of instrumental response times using active passivation. J. Phys. Chem. A 120, 1347–1357 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  50. 50.

    Wang, N., Jorga, S. D., Pierce, J. R., Donahue, N. M. & Pandis, S. N. Particle wall-loss correction methods in smog chamber experiments. Atmos. Meas. Tech. 11, 6577–6588 (2018).

    CAS  Article  Google Scholar 

  51. 51.

    Pathak, R. K., Stanier, C. O., Donahue, N. M. & Pandis, S. N. Ozonolysis of α-pinene at atmospherically relevant concentrations: temperature dependence of aerosol mass fractions (yields). J. Geophys. Res. Atmos. https://doi.org/10.1029/2006JD007436 (2007).

  52. 52.

    Hildebrandt, L., Donahue, N. M. & Pandis, S. N. High formation of secondary organic aerosol from the photo-oxidation of toluene. Atmos. Chem. Phys. 9, 2973–2986 (2009).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

T.L. thanks the National Natural Science Foundation of China projects (92044301, 21806108), the National Key R&D Program of China (2016YFC0202000) and Dengfeng Project of Nanjing University for funding. T.L. and J.P.D.A. thank the Natural Sciences and Engineering Research Council (RPGIN-05972, BCPIR-537926) for funding, and J.G. Murphy and M. Davis for the loan of the TILDAS NH3 monitor and helpful discussions.

Author information

Affiliations

Authors

Contributions

T.L. and J.P.D.A. designed the research project. T.L. performed the research. T.L. and J.P.D.A. analysed data. T.L. and J.P.D.A. wrote the paper.

Corresponding authors

Correspondence to Tengyu Liu or Jonathan P. D. Abbatt.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Chemistry thanks Yafang Cheng, Jianzhen Yu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Time evolution of gas-phase and aerosol-phase species for a typical ammonium nitrate seed aerosol experiment.

Concentrations of wall-loss corrected NO3- (wNO3-) and SO42- (wSO42-) were derived by correcting SO42- concentrations using the wall-loss rate of aerosol NO3- before adding NH3 into the chamber.

Source data

Extended Data Fig. 2 Time evolution of gas-phase and aerosol-phase species for the HONO control experiment.

Concentrations of wall-loss corrected SO42- were derived by correcting SO42- concentrations using a wall-loss rate of NO3- before adding NH3 into the chamber. HONO was added as an oxidant instead of NO2 by bubbling a mixed solution of 10 ml 10 mM NaNO2 and 25 ml 50 mM H2SO4 for 15 min.

Source data

Extended Data Fig. 3 The fit of kexp vs 1/aH+ displayed in log-scale.

AN and MA represent ammonium nitrate and malonic acid experiments, respectively. The fit is based on equation (2) in the main text.

Source data

Extended Data Fig. 4 Dependence of kexp on the activity of hydrogen ion.

The grey line represents a regression fitting with equation (2) in the main text, resulting in a negligible value of \({{{\mathrm{k}}}}_{{{{\mathrm{NO}}}}_2 + {{{\mathrm{HSO}}}}_3^ - }\). The black and red dashed lines represent the results for \({{{\mathrm{k}}}}_{{{{\mathrm{NO}}}}_2 + {{{\mathrm{HSO}}}}_3^ - }\) of 3.0 × 106 M-1 s-1 and 1.5 × 107 M-1 s-1, respectively.

Source data

Extended Data Fig. 5 Time evolution of gas-phase and aerosol-phase species for control experiments without adding SO2.

a, malonic acid, b, ammonium nitrate. Concentrations of wall-loss corrected NO3- for malonic acid and ammonium nitrate experiments were derived by correcting NO3- concentrations using wall-loss rates of organics and NO3- before adding NH3 into the chamber, respectively.

Source data

Extended Data Fig. 6 Average mass-based size distributions.

Average mass-based size distributions of organics, nitrate, and sulfate for typical a malonic acid and b ammonium nitrate seed aerosol experiments. The average mass-based size distributions are shown because the time series data are quite noisy. Nevertheless, the distributions appear similar throughout the course of the experiment.

Source data

Supplementary information

Supplementary Information

Supplementary Tables 1–3.

Source data

Source Data Fig. 1

Statistical Source Data for Fig. 1

Source Data Fig. 2

Statistical Source Data for Fig. 2

Source Data Fig. 4

Statistical Source Data for Fig. 4

Source Data Extended Data Fig. 1

Statistical Source Data for Extended Data Fig. 1

Source Data Extended Data Fig. 2

Statistical Source Data for Extended Data Fig. 2

Source Data Extended Data Fig. 3

Statistical Source Data for Extended Data Fig. 3

Source Data Extended Data Fig. 4

Statistical Source Data for Extended Data Fig. 4

Source Data Extended Data Fig. 5

Statistical Source Data for Extended Data Fig. 5

Source Data Extended Data Fig. 6

Statistical Source Data for Extended Data Fig. 6

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, T., Abbatt, J.P.D. Oxidation of sulfur dioxide by nitrogen dioxide accelerated at the interface of deliquesced aerosol particles. Nat. Chem. (2021). https://doi.org/10.1038/s41557-021-00777-0

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing