Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

SELF-ORGANIZATION

Dissipative DNA fibres

Self-organization — ubiquitous in living systems — occurs out-of-equilibrium, with dissipation of energy and matter. Researchers have now shown that slow proton dissipation switches the assembly of DNA-based fibres to a growth mechanism that heals their gaps, yielding tight nanocable architectures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sketch of the dissipative self-organization process to heal the gaps of DNA-based fibres.

References

  1. Rizzuto, F. J. et al. Nat. Chem. https://doi.org/10.1038/s41557-021-00751-w (2021).

  2. Avakyan, N. et al. Nat. Chem. 8, 369–376 (2016).

    Article  Google Scholar 

  3. Alenaizan, A., Fauché, K., Krishnamurthy, R. & Sherrill, C. D. Chem. Eur. J. 27, 4043–4052 (2021).

    Article  CAS  Google Scholar 

  4. Mattia, E. & Otto, S. Nat. Nanotech. 10, 111–119 (2015).

    Article  CAS  Google Scholar 

  5. Sorrenti, A., Leira-Iglesias, J., Sato, A. & Hermans, T. M. et al. Nat. Commun. 8, 15899 (2017).

    Article  CAS  Google Scholar 

  6. Deng, J., Bezold, D., Jessen, H. J. & Walther, A. Angew. Chem. Int. Ed. 59, 12084–12092 (2020).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathieu Surin.

Ethics declarations

Competing interests

The author declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Surin, M. Dissipative DNA fibres. Nat. Chem. 13, 817–818 (2021). https://doi.org/10.1038/s41557-021-00774-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-021-00774-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing