Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A dissipative pathway for the structural evolution of DNA fibres


Biochemical networks interconnect, grow and evolve to express new properties as different chemical pathways are selected during a continuous cycle of energy consumption and transformation. In contrast, synthetic systems that push away from equilibrium usually return to the same self-assembled state, often generating waste that limits system recyclability and prevents the formation of adaptable networks. Here we show that annealing by slow proton dissipation selects for otherwise inaccessible morphologies of fibres built from DNA and cyanuric acid. Using single-molecule fluorescence microscopy, we observe that proton dissipation influences the growth mechanism of supramolecular polymerization, healing gaps within fibres and converting highly branched, interwoven networks into nanocable superstructures. Just as the growth kinetics of natural fibres determine their structural attributes to modulate function, our system of photoacid-enabled depolymerization and repolymerization selects for healed materials to yield organized, robust fibres. Our method provides a chemical route for error-checking, distinct from thermal annealing, that improves the morphologies and properties of supramolecular materials using out-of-equilibrium systems.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: A light-activated cycle of proton dissipation to regulate the assembly of fibre states.
Fig. 2: Proton dissipation switches the assembly mechanism of DNA fibres at the single-molecule level: TIRF-M investigation.
Fig. 3: Backfilling of short DNA strands into individual A30–CA fibres to determine fibre homogeneity.
Fig. 4: Hierarchical assembly of A30–CA before and after proton dissipation.
Fig. 5: Cryo-EM images of A30–CA fibres before and after proton dissipation.

Data availability

All data supporting the findings of this study are available in the main text or the supplementary materials.


  1. Seeman, N. C. & Sleiman, H. F. DNA nanotechnology. Nat. Rev. Mater. 3, 17068 (2017).

    Article  CAS  Google Scholar 

  2. Veneziano, R. et al. Role of nanoscale antigen organization on B-cell activation probed using DNA origami. Nat. Nanotechnol. 15, 716–723 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. van Rossum, S. A. P., Tena-Solsona, M., van Esch, J. H., Eelkema, R. & Boekhoven, J. Dissipative out-of-equilibrium assembly of man-made supramolecular materials. Chem. Soc. Rev. 46, 5519–5535 (2017).

    PubMed  Article  Google Scholar 

  4. Arango-Restrepo, A., Barragán, D. & Rubi, J. M. Self-assembling outside equilibrium: emergence of structures mediated by dissipation. Phys. Chem. Chem. Phys. 21, 17475–17493 (2019).

    CAS  PubMed  Article  Google Scholar 

  5. Mattia, E. & Otto, S. Supramolecular systems chemistry. Nat. Nanotechnol. 10, 111–119 (2015).

    CAS  PubMed  Article  Google Scholar 

  6. Mishra, A. et al. Biomimetic temporal self-assembly via fuel-driven controlled supramolecular polymerization. Nat. Commun. 9, 1295 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  7. Deng, J. & Walther, A. ATP-powered molecular recognition to engineer transient multivalency and self-sorting 4D hierarchical systems. Nat. Commun. 11, 3658 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. Rieß, B., Grötsch, R. K. & Boekhoven, J. The design of dissipative molecular assemblies driven by chemical reaction cycles. Chem 6, 552–578 (2020).

    Article  CAS  Google Scholar 

  9. Green, L. N. et al. Autonomous dynamic control of DNA nanostructure self-assembly. Nat. Chem. 11, 510–520 (2019).

    CAS  PubMed  Article  Google Scholar 

  10. Heinen, L. & Walther, A. Programmable dynamic steady states in ATP-driven nonequilibrium DNA systems. Sci. Adv. 5, eaaw0590 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. Del Grosso, E., Amodio, A., Ragazzon, G., Prins, L. J. & Ricci, F. Dissipative synthetic DNA-based receptors for the transient loading and release of molecular cargo. Angew. Chem. Int. Ed. 57, 10489–10493 (2018).

    Article  CAS  Google Scholar 

  12. Thubagere, A. J. et al. A cargo-sorting DNA robot. Science 357, eaan6558 (2017).

    PubMed  Article  CAS  Google Scholar 

  13. Mathur, D. & Medintz, I. L. The growing development of DNA nanostructures for potential healthcare-related applications. Adv. Healthc. Mater. 8, 1801546 (2019).

    Article  CAS  Google Scholar 

  14. Shi, J., Shi, Z., Dong, Y., Wu, F. & Liu, D. Responsive DNA-based supramolecular hydrogels. ACS Appl. Bio Mater. 3, 2827–2837 (2020).

    CAS  Article  PubMed  Google Scholar 

  15. Tanaka, K. et al. Self-assembled metal array in artificial DNA. Science 299, 1212–1213 (2003).

    CAS  PubMed  Article  Google Scholar 

  16. Kondo, J. et al. A metallo-DNA nanowire with uninterrupted one-dimensional silver array. Nat. Chem. 9, 956–960 (2017).

    CAS  PubMed  Article  Google Scholar 

  17. Li, Q. et al. A poly(thymine)–melamine duplex for the assembly of DNA nanomaterials. Nat. Mater. 19, 1012–1018 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. Hoshika, S. et al. DNA and RNA: a genetic system with eight building blocks. Science 363, 884–887 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. Joesaar, A. et al. DNA-based communication in populations of synthetic protocells. Nat. Nanotechnol. 14, 369–378 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. McLaughlin, C. K., Hamblin, G. D. & Sleiman, H. F. Supramolecular DNA assembly. Chem. Soc. Rev. 40, 5647–5656 (2011).

    CAS  PubMed  Article  Google Scholar 

  21. Platnich, C. M., Rizzuto, F. J., Cosa, G. & Sleiman, H. F. Single-molecule methods in structural DNA nanotechnology. Chem. Soc. Rev. 49, 4220–4233 (2020).

    CAS  PubMed  Article  Google Scholar 

  22. Rizzuto, F. J., Trinh, T. & Sleiman, H. F. Molecular printing with DNA nanotechnology. Chem 6, 1560–1574 (2020).

    CAS  Article  Google Scholar 

  23. Merindol, R. & Walther, A. Materials learning from life: concepts for active, adaptive and autonomous molecular systems. Chem. Soc. Rev. 46, 5588–5619 (2017).

    CAS  PubMed  Article  Google Scholar 

  24. Zhang, F., Nangreave, J., Liu, Y. & Yan, H. Structural DNA nanotechnology: state of the art and future perspective. J. Am. Chem. Soc. 136, 11198–11211 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. Grzybowski, B. A. & Huck, W. T. S. The nanotechnology of life-inspired systems. Nat. Nanotechnol. 11, 585–592 (2016).

    CAS  PubMed  Article  Google Scholar 

  26. Madsen, M. & Gothelf, K. V. Chemistries for DNA nanotechnology. Chem. Rev. 119, 6384–6458 (2019).

    CAS  PubMed  Article  Google Scholar 

  27. Colomer, I., Morrow, S. M. & Fletcher, S. P. A transient self-assembling self-replicator. Nat. Commun. 9, 2239 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  28. Wood, C. S., Browne, C., Wood, D. M. & Nitschke, J. R. Fuel-controlled reassembly of metal–organic architectures. ACS Cent. Sci. 1, 504–509 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. Jalani, K., Das, A. D., Sasmal, R., Agasti, S. S. & George, S. J. Transient dormant monomer states for supramolecular polymers with low dispersity. Nat. Commun. 11, 3967 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. Singh, N., Lainer, B., Formon, G. J. M., De Piccoli, S. & Hermans, T. M. Re-programming hydrogel properties using a fuel-driven reaction cycle. J. Am. Chem. Soc. 142, 4083–4087 (2020).

    CAS  PubMed  Article  Google Scholar 

  31. Avakyan, N. et al. Reprogramming the assembly of unmodified DNA with a small molecule. Nat. Chem. 8, 368–376 (2016).

    CAS  PubMed  Article  Google Scholar 

  32. Alenaizan, A., Fauche, K., Krishnamurthy, R. & Sherrill, C. D. Noncovalent helicene structure between nucleic acids and cyanuric acid. Chem. Eur. J. 27, 4043–4052 (2021).

    CAS  PubMed  Article  Google Scholar 

  33. Markvoort, A. J., Eikelder, H. M. Mt, Hilbers, P. A. J. & de Greef, T. F. A. Fragmentation and coagulation in supramolecular (co)polymerization kinetics. ACS Cent. Sci. 2, 232–241 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. Kang, J. et al. A rational strategy for the realization of chain-growth supramolecular polymerization. Science 347, 646–651 (2015).

    CAS  PubMed  Article  Google Scholar 

  35. Rupar, P. A., Chabanne, L., Winnik, M. A. & Manners, I. Non-centrosymmetric cylindrical micelles by unidirectional growth. Science 337, 559–562 (2012).

    CAS  PubMed  Article  Google Scholar 

  36. Aida, T., Meijer, E. W. & Stupp, S. I. Functional supramolecular polymers. Science 335, 813–817 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. Matern, J., Dorca, Y., Sánchez, L. & Fernández, G. Revising complex supramolecular polymerization under kinetic and thermodynamic control. Angew. Chem. Int. Ed. 58, 16730–16740 (2019).

    CAS  Article  Google Scholar 

  38. Chakraborty, S., Sharma, S., Maiti, P. K. & Krishnan, Y. The poly dA helix: a new structural motif for high performance DNA-based molecular switches. Nucleic Acids Res. 37, 2810–2817 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. Shi, Z., Peng, P., Strohecker, D. & Liao, Y. Long-lived photoacid based upon a photochromic reaction. J. Am. Chem. Soc. 133, 14699–14703 (2011).

    CAS  PubMed  Article  Google Scholar 

  40. Kundu, P. K. et al. Light-controlled self-assembly of non-photoresponsive nanoparticles. Nat. Chem. 7, 646–652 (2015).

    CAS  PubMed  Article  Google Scholar 

  41. Zhao, D. & Moore, J. S. Nucleation–elongation: a mechanism for cooperative supramolecular polymerization. Org. Biomol. Chem. 1, 3471–3491 (2003).

    CAS  PubMed  Article  Google Scholar 

  42. Smulders, M. M. J. et al. How to distinguish isodesmic from cooperative supramolecular polymerisation. Chem. Eur. J. 16, 362–367 (2010).

    CAS  PubMed  Article  Google Scholar 

  43. Meisl, G. et al. Molecular mechanisms of protein aggregation from global fitting of kinetic models. Nat. Protoc. 11, 252–272 (2016).

    CAS  PubMed  Article  Google Scholar 

  44. Gidi, Y., Bayram, S., Ablenas, C. J., Blum, A. S. & Cosa, G. Efficient one-step PEG-silane passivation of glass surfaces for single-molecule fluorescence studies. ACS Appl. Mater. Interfaces 10, 39505–39511 (2018).

    CAS  PubMed  Article  Google Scholar 

  45. Castle, B. T., Odde, D. J. & Wood, D. K. Rapid and inefficient kinetics of sickle hemoglobin fibre growth. Sci. Adv. 5, eaau1086 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. Weisel, J. W. & Nagaswami, C. Computer modeling of fibrin polymerization kinetics correlated with electron microscope and turbidity observations: clot structure and assembly are kinetically controlled. Biophys. J. 63, 111–128 (1992).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. Jia, Z., Schmit, J. D. & Chen, J. Amyloid assembly is dominated by misregistered kinetic traps on an unbiased energy landscape. Proc. Natl Acad. Sci. USA 117, 10322–10328 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. Zhu, S. et al. Self-assembly of collagen-based biomaterials: preparation, characterizations and biomedical applications. J. Mater. Chem. B 6, 2650–2676 (2018).

    CAS  PubMed  Article  Google Scholar 

Download references


G.C. and H.F.S. are grateful to the National Science and Engineering Research Council of Canada (NSERC), the Canada Foundation for Innovation (CFI), and the Fonds de Recherche Nature et Technologies (FRQNT). H.F.S. is also grateful to the Canada Research Chairs Program, the Canada Council for the Arts for a Killam Fellowship, and is a Cottrell Scholar of the Research Corporation. A.G. thanks the Canada Institute for Health Research (CIHR) and the McGill Facility for Electron Microscopy Research (FEMR). F.J.R., C.M.P and C.L.-B. thank NSERC for a Banting Fellowship, CGS-D Scholarship, and Vanier Scholarship, respectively. The authors thank Y. Gidi for insightful discussions on the single-molecule data.

Author information

Authors and Affiliations



F.J.R, C.M.P. and H.F.S. conceived and designed the experiments. F.J.R. and H.F.S. performed and analysed the ensemble experiments. C.M.P. and G.C. conceived, performed and analysed the single-molecule fluorescence experiments. X.L. and M.D.D. performed the AFM experiments. C.L.-B. performed the persistence length analyses. Y.S. and A.G. performed and analysed the cryo-EM experiments. F.J.R, C.M.P. and H.F.S. co-wrote the paper with input from all authors.

Corresponding author

Correspondence to Hanadi F. Sleiman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Chemistry thanks Subi George, Mathieu Surin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–44, methods and references.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rizzuto, F.J., Platnich, C.M., Luo, X. et al. A dissipative pathway for the structural evolution of DNA fibres. Nat. Chem. 13, 843–849 (2021).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing