Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Site-selective tyrosine bioconjugation via photoredox catalysis for native-to-bioorthogonal protein transformation

Abstact

The growing prevalence of synthetically modified proteins in pharmaceuticals and materials has exposed the need for efficient strategies to enable chemical modifications with high site-selectivity. While genetic engineering can incorporate non-natural amino acids into recombinant proteins, regioselective chemical modification of wild-type proteins remains a challenge. Herein, we use photoredox catalysis to develop a site-selective tyrosine bioconjugation pathway that incorporates bioorthogonal formyl groups, which subsequently allows for the synthesis of structurally defined fluorescent conjugates from native proteins. A water-soluble photocatalyst, lumiflavin, has been shown to induce oxidative coupling between a previously unreported phenoxazine dialdehyde tag and a single tyrosine site, even in the presence of multiple tyrosyl side chains, through the formation of a covalent C–N bond. A variety of native proteins, including those with multiple tyrosines, can successfully undergo both tyrosine-specific and single-site-selective labelling. This technology directly introduces aldehyde moieties onto native proteins, enabling rapid product diversification using an array of well-established bioorthogonal functionalization protocols including the alkyne–azide click reaction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The photoredox-catalysed merger of native protein site-selective bioconjugation with bioorthogonal methodology.
Fig. 2: Tyrosine microenvironments.
Fig. 3: Proposed reaction mechanism for site-selective amination on tyrosine residues.
Fig. 4: Diversification of photoredox tyrosine amination products via bioorthogonal aldehyde-click functionalization.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the article and its Supplementary Information.

References

  1. Stephanopoulos, N. & Francis, M. B. Choosing an effective protein bioconjugation strategy. Nat. Chem. Biol. 7, 876–884 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Spicer, C. D. & Davis, B. G. Selective chemical protein modification. Nat. Commun. 5, 4740 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Agarwal, P., Beahm, B. J., Shieh, P. & Bertozzi, C. R. Systemic fluorescence imaging of zebrafish glycans with bioorthogonal chemistry. Angew. Chem. Int. Ed. 54, 11504–11510 (2015).

    Article  CAS  Google Scholar 

  4. Hoyt, E. A., Cal, P. M. S. D., Oliveira, B. L. & Bernardes, G. J. L. Contemporary approaches to site-selective protein modification. Nat. Rev. Chem. 3, 147–171 (2019).

    Article  CAS  Google Scholar 

  5. deGruter, J. N., Malins, L. R. & Baran, P. S. Residue-specific peptide modification: a chemist’s guide. Biochemistry 56, 3863–3873 (2017).

    Article  CAS  Google Scholar 

  6. Boutureira, O. & Bernardes, G. J. L. Advances in chemical protein modification. Chem. Rev. 115, 2174–2195 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Koniev, O. & Wagner, A. Developments and recent advancements in the field of endogenous amino acid selective bond forming reactions for bioconjugation. Chem. Soc. Rev. 44, 5495–5551 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Hermanson, G. T. Bioconjugate Techniques (Academic Press, 1996).

  9. Gunnoo, S. B. & Madder, A. Chemical protein modification through cysteine. ChemBioChem 17, 529–553 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Rosen, C. B. & Francis, M. B. Targeting the N terminus for site-selective protein modification. Nat. Chem. Biol. 13, 697–705 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. Bloom, S. et al. Decarboxylative alkylation for site-selective bioconjugation of native proteins via oxidation potentials. Nat. Chem. 10, 205–211 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. Garreau, M., Le Vaillant, F. & Waser, J. C-terminal bioconjugation of peptides through photoredox catalyzed decarboxylative alkynylation. Angew. Chem. Int. Ed. 58, 8182–8186 (2019).

    Article  CAS  Google Scholar 

  13. Joshi, N. S., Whitaker, L. R. & Francis, M. B. A three-component Mannich-type reaction for selective tyrosine bioconjugation. J. Am. Chem. Soc. 126, 15942–15943 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Ban, H. et al. Facile and stabile linkages through tyrosine: bioconjugation strategies with the tyrosine-click reaction. Bioconjugate Chem. 24, 520–532 (2013).

    Article  CAS  Google Scholar 

  15. Alvarez-Dorta, D. et al. Electrochemically promoted tyrosine-click-chemistry for protein labeling. J. Am. Chem. Soc. 140, 17120–17126 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Song, C. et al. Electrochemical oxidation induced selective tyrosine bioconjugation for the modification of biomolecules. Chem. Sci. 10, 7982–7987 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sato, S. & Nakamura, H. Ligand-directed selective protein modification based on local single-electron-transfer catalysis. Angew. Chem. Int. Ed. 52, 8681–8684 (2013).

    Article  CAS  Google Scholar 

  18. Seki, Y. et al. Transition metal-free tryptophan-selective bioconjugation of proteins. J. Am. Chem. Soc. 138, 10798–10801 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Lin, S. et al. Redox-based reagents for chemoselective methionine bioconjugation. Science 355, 597–602 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Taylor, M. T., Nelson, J. E., Suero, M. G. & Gaunt, M. J. A protein functionalization platform based on selective reactions at methionine residues. Nature 562, 563–568 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shaw, M. H., Twilton, J. & MacMillan, D. W. C. Photoredox catalysis in organic chemistry. J. Org. Chem. 81, 6898–6926 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bottecchia, C. & Noël, T. Photocatalytic modification of amino acids, peptides, and proteins. Chem. Eur. J. 25, 26–42 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. McCarver, S. J. et al. Decarboxylative peptide macrocyclization through photoredox catalysis. Angew. Chem. Int. Ed. 56, 728–732 (2017).

    Article  CAS  Google Scholar 

  24. Kölmel, D. K. et al. On-DNA decarboxylative arylation: merging photoredox with nickel catalysis in water. ACS Comb. Sci. 21, 588–597 (2019).

    Article  PubMed  CAS  Google Scholar 

  25. Montanari, E. et al. Tyrosinase-mediated bioconjugation. A versatile approach to chimeric macromolecules. Bioconjugate Chem. 29, 2550–2560 (2018).

    Article  CAS  Google Scholar 

  26. Echols, N. et al. Comprehensive analysis of amino acid and nucleotide composition in eukaryotic genomes, comparing genes and pseudogenes. Nucleic Acids Res. 30, 2515–2523 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Malik, N. A. & Ali, A. Interaction, thermodynamic, and solubilisation study of amino acid-tyrosine in aqueous anionic and cationic amphiphiles: electrical conductance and spectroscopic studies. Phys. Chem. Liq. 56, 69–79 (2017).

    Article  CAS  Google Scholar 

  28. Ruffoni, A. et al. Practical and regioselective amination of arenes using alkyl amines. Nat. Chem. 11, 426–433 (2019).

    Article  CAS  PubMed  Google Scholar 

  29. Berger, F. et al. Site-selective and versatile aromatic C−H functionalization by thianthrenation. Nature 567, 223–228 (2019).

    Article  CAS  PubMed  Google Scholar 

  30. Ham, W. S., Hillenbrand, J., Jacq, J., Genicot, C. & Ritter, T. Divergent late-stage (hetero)aryl C–H amination by the pyridinium radical cation. Angew. Chem. Int. Ed. 58, 532–536 (2019).

    Article  CAS  Google Scholar 

  31. Weinberg, D. R. et al. Proton-coupled electron transfer. Chem. Rev. 112, 4016–4093 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Mantsch, H. H. π-Electronic structure and reactivity of phenoxazine (1), phenothiazine (2), and phenoxthiin (3). Can. J. Chem. 47, 3174–3178 (1969).

    Article  Google Scholar 

  33. Patureau, F. W. The phenol-phenothiazine coupling: an oxidative click concept. ChemCatChem 11, 5227–5231 (2019).

    Article  CAS  Google Scholar 

  34. Walling, C. Free Radicals in Solution (John Wiley & Sons, 1957).

  35. Roberts, B. P. Polarity-reversal catalysis of hydrogen-atom abstraction reactions: concepts and applications in organic chemistry. Chem. Soc. Rev. 28, 25–35 (1999).

    Article  CAS  Google Scholar 

  36. Penzkofer, A. Photoluminescence behavior of riboflavin and lumiflavin in liquid solutions and solid films. Chem. Phys. 400, 142–153 (2012).

    Article  CAS  Google Scholar 

  37. Heelis, P. F. The photophysical and photochemical properties of flavins (isoalloxazines). Chem. Soc. Rev. 1, 15–39 (1982).

    Article  Google Scholar 

  38. Minamihata, K., Goto, M. & Kamiya, N. Control of a tyrosyl radical mediated protein cross-linking reaction by electrostatic interaction. Bioconjugate Chem. 23, 1600–1609 (2012).

    Article  CAS  Google Scholar 

  39. Rabuka, D., Rush, J. S., deHart, G. W., Wu, P. & Bertozzi, C. R. Site-specific chemical protein conjugation using genetically encoded aldehyde tags. Nat. Protoc. 5, 1052–1067 (2012).

    Article  CAS  Google Scholar 

  40. Crisalli, P. & Kool, E. T. Water-soluble organocatalysts for hydrazone and oxime formation. J. Org. Chem. 78, 1184–1189 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Whitmore, L. & Wallace, B. A. Protein secondary structure analyses from circular dichroism spectroscopy: methods and reference databases. Biopolymers 89, 392–400 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Fernández-Suárez, M. & Ting, A. Y. Fluorescent probes for super-resolution imagine in living cell. Nat. Rev. Mol. Cell Biol. 9, 929–943 (2008).

    Article  PubMed  CAS  Google Scholar 

  43. Rodriguez, E. A. et al. The growing and glowing toolbox of fluorescent and photoactive proteins. Trends Biochem. Sci. 42, 111–129 (2017).

    Article  CAS  PubMed  Google Scholar 

  44. Berman, H. M. et al. The protein data bank. Nucleic Acids Res. 28, 235–242 (2000).

Download references

Acknowledgements

Research was primarily supported as a part of BioLEC, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under award DE-SC0019370 for all research efforts directed towards bioconjugation studies and spectroscopic analyses. We acknowledge K. Saw, H.H. Shwe and the use of Princeton’s Imaging and Analysis Center, which is partially supported by the Princeton Center for Complex Materials, a National Science Foundation/Materials Research Science and Engineering Centers programme (DMR-1420541). We also acknowledge V. G. Vendavasi and the use of Princeton’s Biophysics Core Facility. We thank T. W. Muir and members of the Muir Laboratory for their advice and analytical support. Finally, we thank T.F. Brewer for additional discussions and advice.

Author information

Authors and Affiliations

Authors

Contributions

B.X.L., D.K.K. and S.B. performed and analysed the bioconjugation experiments. R.Y.-C.H. performed and analysed the mass spectrometry experiments. D.G.O. performed and analysed the transient absorption spectroscopy experiments. D.K.K., B.X.L., S.B. and D.W.C.M. designed the experiments. D.K.K., B.X.L. and D.W.C.M. prepared this manuscript. G.D.S., J.X.Q. and W.R.E. provided helpful discussions.

Corresponding author

Correspondence to David W. C. MacMillan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Experimental details, intact mass spectrometry product characterization, fluorescence assay details, reagent synthesis procedures, NMR spectra, LC-MS/MS spectra and ultrafast spectroscopy details.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B.X., Kim, D.K., Bloom, S. et al. Site-selective tyrosine bioconjugation via photoredox catalysis for native-to-bioorthogonal protein transformation. Nat. Chem. 13, 902–908 (2021). https://doi.org/10.1038/s41557-021-00733-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-021-00733-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing