Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Chemical-mediated translocation in protocell-based microactuators

Abstract

Artificial cell-like communities participate in diverse modes of chemical interaction but exhibit minimal interfacing with their local environment. Here we develop an interactive microsystem based on the immobilization of a population of enzyme-active semipermeable proteinosomes within a helical hydrogel filament to implement signal-induced movement. We attach large single-polynucleotide/peptide microcapsules at one or both ends of the helical protocell filament to produce free-standing soft microactuators that sense and process chemical signals to perform mechanical work. Different modes of translocation are achieved by synergistic or antagonistic enzyme reactions located within the helical connector or inside the attached microcapsule loads. Mounting the microactuators on a ratchet-like surface produces a directional push–pull movement. Our methodology opens up a route to protocell-based chemical systems capable of utilizing mechanical work and provides a step towards the engineering of soft microscale objects with increased levels of operational autonomy.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Microfluidic preparation of protocell-embedded helical hydrogel filaments.
Fig. 2: Protocell-mediated elastic behaviour.
Fig. 3: Protocell-mediated energy release and helical hydrogel filament elongation.
Fig. 4: Protocell-induced contraction of extended helical hydrogel filaments.
Fig. 5: Protocell-mediated reversible contraction of helical hydrogel filaments.
Fig. 6: Enzyme-mediated translocation in protocell-based microactuators.
Fig. 7: Endogenous transmission in protocell-based microactuators.
Fig. 8: Antagonistic modes of transmission in protocell-based microactuators.

Data availability

All data supporting the results and conclusions are available within this paper and the Supplementary Information. Copies of the raw data can be obtained via the link: https://figshare.com/articles/figure/NCHEM-20071608A_zip/14331317. Source data are provided with this paper.

References

  1. 1.

    Stano, P. & Luisi, P. L. Semi-synthetic minimal cells: origin and recent developments. Curr. Opin. Biotechnol. 24, 633–638 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  2. 2.

    Szostak, J. W., Bartel, D. P. & Luisi, P. L. Synthesizing life. Nature 409, 387–390 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  3. 3.

    Peters, R. J. R. W., Louzao, I. & van Hest, J. C. M. From polymeric nanoreactors to artificial organelles. Chem. Sci. 3, 335–342 (2012).

    CAS  Article  Google Scholar 

  4. 4.

    Huang, X. et al. Interfacial assembly of protein–polymer nano-conjugates into stimulus-responsive biomimetic protocells. Nat. Commun. 4, 2239 (2013).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  5. 5.

    Kumar, P. B. V. V. S., Patil, A. J. & Mann, S. Enzyme-powered motility in buoyant organoclay/DNA protocells. Nat. Chem. 10, 1154–1163 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  6. 6.

    Li, M., Harbron, R. L., Weaver, J. V. M., Binks, B. P. & Mann, S. Electrostatically gated membrane permeability in inorganic protocells. Nat. Chem. 5, 529–536 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  7. 7.

    Tawfik, D. S. & Griffiths, A. D. Man-made cell-like compartments for molecular evolution. Nat. Biotechnol. 16, 652–656 (1998).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  8. 8.

    Torre, P., Keating, C. D. & Mansy, S. S. Aqueous multi-phase systems within water-in-oil emulsion droplets for the construction of genetically encoded cellular mimics. Langmuir 30, 5695–5699 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    Küchler, A., Yoshimoto, M., Lunginbühl, S., Mavelli, F. & Walde, P. Enzymatic reactions in confined environments. Nat. Nanotechnol. 11, 409–420 (2016).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  10. 10.

    Buddingh, B. C. & van Hest, J. C. M. Artificial cells: synthetic compartments with life-like functionality and adaptivity. Acc. Chem. Res. 50, 769–777 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Li, M., Huang, X. & Mann, S. Spontaneous growth and division in self-reproducing inorganic colloidosomes. Small 10, 3291–3298 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  12. 12.

    Zhu, T. F. & Szostak, J. W. Coupled growth and division of model protocell membranes. J. Am. Chem. Soc. 131, 5705–5713 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Rivas, G., Vogel, S. K. & Schwille, P. Reconstitution of cytoskeletal protein assemblies for large-scale membrane transformation. Curr. Opin. Chem. Biol. 22, 18–26 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. 14.

    Weiss, M. et al. Sequential bottom-up assembly of mechanically stabilized synthetic cells by microfluidics. Nat. Mater. 17, 89–96 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  15. 15.

    Noireaux, V., Bar-Ziv, R., Godefroy, J., Salman, H. & Libchaber, A. Toward an artificial cell based on gene expression in vesicles. Phys. Biol. 2, 1–8 (2005).

    Article  CAS  Google Scholar 

  16. 16.

    Weitz, M. et al. Diversity in the dynamical behaviour of a compartmentalized programmable biochemical oscillator. Nat. Chem. 6, 295–302 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. 17.

    Wilson, D. A., Nolte, R. J. M. & van Hest, J. C. M. Autonomous movement of platinum-loaded stomatocytes. Nat. Chem. 4, 268–274 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  18. 18.

    Rodriguez-Arco, L., Li, M. & Mann, S. Phagocytosis-inspired behaviour in synthetic protocell communities of compartmentalized colloidal objects. Nat. Mater. 16, 857–863 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  19. 19.

    Martin, N. et al. Antagonistic chemical coupling in self-reconfigurable host–guest protocells. Nat. Commun. 9, 3652 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  20. 20.

    Koga, S., Williams, D. S., Perriman, A. W. & Mann, S. Peptide–nucleotide microdroplets as a step towards a membrane-free protocell model. Nat. Chem. 3, 720–724 (2011).

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Tang, T.-Y. D. et al. Fatty acid membrane assembly on coacervate microdroplets as a step towards a hybrid protocell model. Nat. Chem. 6, 527–533 (2014).

    Article  CAS  Google Scholar 

  22. 22.

    Aumiller, W. M. & Keating, C. D. Phosphorylation-mediated RNA/peptide complex coacervation as a model for intracellular liquid organelles. Nat. Chem. 8, 129–137 (2016).

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Mason, A. F., Buddingh, B. C., Williams, D. S. & van Hest, J. C. M. Hierarchical self-assembly of a copolymer-stabilized coacervate protocell. J. Am. Chem. Soc. 139, 17309–17312 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Nakashima, K. K., Baaij, J. F. & Spruijt, E. Reversible generation of coacervate droplets in an enzymatic network. Soft Matter 14, 361–367 (2018).

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Tang, T.-Y. D., van Swaay, D., deMello, A., Anderson, J. L. R. & Mann, S. In vitro gene expression within membrane-free coacervate protocells. Chem. Commun. 51, 11429–11432 (2015).

    Article  Google Scholar 

  26. 26.

    Crosby, J. et al. Stabilization and enhanced reactivity of actinorhodin polyketide synthase minimal complex in polymer–nucleotide coacervate droplets. Chem. Commun. 48, 11832–11834 (2012).

    CAS  Article  Google Scholar 

  27. 27.

    Drobot, B. et al. Compartmentalized RNA catalysis in membrane-free coacervate protocells. Nat. Commun. 9, 3643 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  28. 28.

    Poudyal, R. R. et al. Template-directed RNA polymerization and enhanced ribozyme catalysis inside membraneless compartments formed by coacervates. Nat. Commun. 10, 490 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    Yin, Y. et al. Non-equilibrium behaviour in coacervate-based protocells under electric-field-induced excitation. Nat. Commun. 7, 10658 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Tian, L. et al. Spontaneous assembly of chemically encoded two-dimensional coacervate droplet arrays by acoustic wave patterning. Nat. Commun. 7, 13068 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. 31.

    Qiao, Y., Li, M., Booth, R. & Mann, S. Predatory behaviour in synthetic protocell communities. Nat. Chem. 9, 110–119 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. 32.

    Tian, L., Li, M., Patil, A. J., Drinkwater, B. W. & Mann, S. Artificial morphogen-mediated differentiation in synthetic protocell communities. Nat. Commun. 10, 3321 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  33. 33.

    Adamala, K. P., Martin-Alarcon, D. A., Guthrie-Honea, K. R. & Boyden, E. S. Engineering genetic circuit interactions within and between synthetic minimal cells. Nat. Chem. 9, 431–439 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  34. 34.

    Tang, T.-Y. D. et al. Gene-mediated chemical communication in synthetic protocell communities. ACS Synth. Biol. 7, 339–346 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  35. 35.

    Sun, S. et al. Chemical signaling and functional activation in colloidosome-based protocells. Small 12, 1920–1927 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  36. 36.

    Tian, L. et al. Non-equilibrium spatiotemporal sensing within acoustically patterned two-dimensional protocell arrays. ACS Cent. Sci. 4, 1551–1558 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Joesaar, A. et al. Distributed DNA-based communication in populations of synthetic protocells. Nat. Nanotechnol. 14, 369–378 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Gobbo, P. et al. Programmed assembly of synthetic protocells into thermoresponsive prototissues. Nat. Mater. 17, 1145–1153 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  39. 39.

    Villar, G., Graham, A. D. & Bayley, H. A tissue-like printed material. Science 340, 48–52 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Booth, M. J., Schild, V. R., Graham, A. D., Olof, S. N. & Bayley, H. Light-activated communication in synthetic tissues. Sci. Adv. 2, e1600056 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  41. 41.

    Dupin, A. & Simmel, F. C. Signalling and differentiation in emulsion-based multi-compartmentalized in vitro gene circuits. Nat. Chem. 11, 32–39 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  42. 42.

    Baxani, D. K. et al. Bilayer networks within a hydrogel shell: a robust chassis for artificial cells and a platform for membrane studies. Angew. Chem. Int. Ed. 55, 14240–14245 (2016).

    CAS  Article  Google Scholar 

  43. 43.

    Bayoumi, M., Bayley, H., Maglia, G. & Sapra, K. T. Multi-compartment encapsulation of communicating droplets and droplet networks in hydrogel as a model for artificial cells. Sci. Rep. 7, 45167 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. 44.

    Liu, J. et al. Hydrogel-immobilized coacervate droplets as modular microreactor assemblies. Angew. Chem. Int. Ed. 59, 6853–6859 (2020).

    CAS  Article  Google Scholar 

  45. 45.

    Barnes, G. & Woodcock, R. Liquid rope-coil effect. Am. J. Phys. 26, 205–209 (1958).

    Article  Google Scholar 

  46. 46.

    Yu, Y. et al. Bioinspired helical microfibers from microfluidics. Adv. Mater. 29, 1605765 (2017).

    Article  CAS  Google Scholar 

  47. 47.

    He, X. et al. Synthetic homeostatic materials with chemo-mechano-chemical self-regulation. Nature 487, 214–218 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  48. 48.

    Grinthala, A. & Aizenberg, J. Adaptive all the way down: building responsive materials from hierarchies of chemomechanical feedback. Chem. Soc. Rev. 42, 7072–7085 (2013).

    Article  CAS  Google Scholar 

  49. 49.

    Kim, Y. S. et al. Thermoresponsive actuation enabled by permittivity switching in an electrostatically anisotropic hydrogel. Nat. Mater. 14, 1002–1007 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  50. 50.

    Wang, L. et al. Reprogrammable, magnetically controlled polymeric nanocomposite actuators. Mater. Horiz. 5, 861–867 (2018).

    CAS  Article  Google Scholar 

  51. 51.

    Downs, F. G. et al. Multi-responsive hydrogel structures from patterned droplet networks. Nat. Chem. 12, 363–371 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. 52.

    Lancia, F. et al. Mechanical adaptability of artificial muscles from nanoscale molecular action. Nat. Commun. 10, 4819 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  53. 53.

    Abdelmohsen, L. K. E. A. et al. Dynamic loading and unloading of proteins in polymeric stomatocytes: formation of an enzyme-loaded supramolecular nanomotor. ACS Nano. 10, 2652–2660 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  54. 54.

    Joseph, A. et al. Chemotactic synthetic vesicles: design and applications in blood-brain barrier crossing. Sci. Adv. 3, e1700362 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  55. 55.

    Jaggers, R. W. & Bon, S. A. F. Independent responsive behaviour and communication in hydrogel objects. Mater. Horiz. 4, 402–407 (2017).

    CAS  Article  Google Scholar 

  56. 56.

    Zhou, Y. et al. In situ gelation-induced death of cancer cells based on proteinosomes. Biomacromolecules 18, 2446–2453 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  57. 57.

    Kumar, B. P., Patil, A. J. & Mann, S. Enzyme-powered motility in buoyant organoclay/DNA protocells. Nat. Chem. 10, 1154–1163 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the European Commission for financial support (8082 H2020 PCELLS 740235); the Wolfson Bioimaging Facility and the Chemical Imaging Facility for help with characterization; A. McAleer and J. Liu for assistance with ICP-OES measurements; C. Xu for help with preparing ultrasmall proteinosomes; I. Myrgorodska and Z. Yin for providing BSA nanoconjugates; R. Moreno Tortolero for assistance with developing the microforce measurement system; P. Peschke for help with recording microfocal images; and Z. Shen for butterfly wing samples and suggesting their use as a ratchet-like surface.

Author information

Affiliations

Authors

Contributions

N.G., M.L. and S.M. conceived the experiments. N.G. undertook the experiments. L.T. assisted with constructing the bilateral microactuators. A.J.P and B.V.V.S.P.K. prepared DNA/protamine microcapsules. N.G., M.L., L.T. and S.M. undertook the data analysis. L.T. contributed to the preparation of the manuscript. N.G., M.L. and S.M. wrote the manuscript. All authors commented on the manuscript.

Corresponding authors

Correspondence to Mei Li or Stephen Mann.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Chemistry thanks Esther Amstad, Oliver Castell and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Materials and Methods, description of the videos and Figs. 1–33.

Supplementary Video 1

Confocal laser scanning microscopy video showing morphology of the ultrasmall FITC-labelled proteinosomes.

Supplementary Video 2

Fluorescence microscopy video showing formation of a protocell/hydrogel helical filament in a glass capillary microfluidic device.

Supplementary Video 3

Fluorescence microscopy video showing the 3D structure of a protocell/hydrogel helical filament.

Supplementary Video 4

Optical microscopy video showing protocell-mediated energy release in a single helical filament of hydrogel-immobilized (3 wt% sodium alginate; 2 wt% CaCl2) urease-containing proteinosomes after addition of urea (3 ml, 60 mM).

Supplementary Video 5

Optical microscopy video showing use of a protocell/hydrogel helical filament as a microactuator.

Supplementary Video 6

Optical microscopy video showing synergistic mode of endogenous transmission in an integrated free-standing protocell-based microactuator.

Supplementary Video 7

Optical microscopy video showing translocation of a single urease-containing DNA/protamine microcapsule (urease, 10 mg ml−1) attached to one end of a helical filament microactuator filament (3 wt% Na alginate, 2 wt% CaCl2) after addition of urea (3 ml, 5 mM).

Supplementary Video 8

Optical microscopy video showing consecutive pitch extension and contraction of a protocell-based microactuator as the pitch is extended and contracted respectively by the influx of urea (5 mM, 2 ml h−1) or CaCl2 (1 wt%, 2 ml h−1).

Source data

Source Data Fig. 1

Statistical Source Data for Fig. 1h.

Source Data Fig. 2

Statistical Source Data for Fig. 2b,c.

Source Data Fig. 3

Statistical Source Data for Fig. 3c–h.

Source Data Fig. 4

Statistical Source Data for Fig. 4c,d,f–i.

Source Data Fig. 5

Statistical Source Data for Fig. 5c.

Source Data Fig. 6

Statistical Source Data for Fig. 6b,h.

Source Data Fig. 7

Statistical Source Data for Fig. 7c,i.

Source Data Fig. 8

Statistical Source Data for Fig. 8d,g,h.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gao, N., Li, M., Tian, L. et al. Chemical-mediated translocation in protocell-based microactuators. Nat. Chem. 13, 868–879 (2021). https://doi.org/10.1038/s41557-021-00728-9

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing