Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Catalytic reductive desymmetrization of malonic esters


Desymmetrization of fully substituted carbons with a pair of enantiotopic functional groups is a practical strategy for the synthesis of quaternary stereocentres, as it divides the tasks of enantioselection and C−C bond formation. The use of disubstituted malonic esters as the substrate of desymmetrization is particularly attractive, given their easy and modular preparation, as well as the high synthetic values of the chiral monoester products. Here, we report that a dinuclear zinc complex with a tetradentate ligand can selectively hydrosilylate one of the carbonyls of malonic esters to give α-quaternary β-hydroxyesters, providing a promising alternative to the desymmetric hydrolysis using carboxylesterases. The asymmetric reduction features excellent enantiocontrol that can differentiate sterically similar substituents and high chemoselectivity towards the diester motif of substrates. Together with the versatile preparation of malonic ester substrates and post-reduction derivatization, the desymmetric reduction has enabled the synthesis of a diverse array of quaternary stereocentres with distinct structural features.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Quaternary stereocentres via desymmetrization of malonic esters.
Fig. 2: Zinc-catalysed desymmetric hydrosilylation of malonic esters.
Fig. 3: Application of the reductive desymmetrization.
Fig. 4: Kinetic study and proposed hydride transfer transition states.

Data availability

The data supporting the findings of this study are available within the paper and its Supplementary Information. Crystallographic data for 50a reported in this Article have been deposited at the Cambridge Crystallographic Data Centre, under deposition number CCDC 2025159. Copies of the data can be obtained free of charge via Source data are provided with this paper.


  1. 1.

    Quasdorf, K. W. & Overman, L. E. Catalytic enantioselective synthesis of quaternary carbon stereocentres. Nature 516, 181–191 (2014).

    CAS  Article  Google Scholar 

  2. 2.

    Trost, B. M. & Jiang, C. Catalytic enantioselective construction of all-carbon quaternary stereocenters. Synthesis 369-396 (2006).

  3. 3.

    Corey, E. J. & Guzman-Perez, A. The catalytic enantioselective construction of molecules with quaternary carbon stereocenters. Angew. Chem. Int. Ed. 37, 388–401 (1998).

    Article  Google Scholar 

  4. 4.

    Lovering, F., Bikker, J. & Humblet, C. Escape from flatland: increasing saturation as an approach to improving clinical success. J. Med. Chem. 52, 6752–6756 (2009).

    CAS  Article  Google Scholar 

  5. 5.

    Lovering, F. Escape from flatland 2: complexity and promiscuity. MedChemComm 4, 515–519 (2013).

    CAS  Article  Google Scholar 

  6. 6.

    Das, J. P. & Marek, I. Enantioselective synthesis of all-carbon quaternary stereogenic centers in acyclic systems. Chem. Commun. 47, 4593–4623 (2011).

    CAS  Article  Google Scholar 

  7. 7.

    Feng, J., Holmes, M. & Krische, M. J. Acyclic quaternary carbon stereocenters via enantioselective transition metal catalysis. Chem. Rev. 117, 12564–12580 (2017).

    CAS  Article  Google Scholar 

  8. 8.

    Wendlandt, A. E., Vangal, P. & Jacobsen, E. N. Quaternary stereocentres via an enantioconvergent catalytic SN1 reaction. Nature 556, 447–451 (2018).

    CAS  Article  Google Scholar 

  9. 9.

    Braun, M. & Kotter, W. Titanium(iv)-catalyzed dynamic kinetic asymmetric transformation of alcohols, silyl ethers, and acetals under carbon allylation. Angew. Chem. Int. Ed. 43, 514–517 (2004).

    CAS  Article  Google Scholar 

  10. 10.

    Zhao, W., Wang, Z., Chu, B. & Sun, J. Enantioselective formation of all‐carbon quaternary stereocenters from indoles and tertiary alcohols bearing a directing group. Angew. Chem. Int. Ed. 54, 1910–1913 (2015).

    CAS  Article  Google Scholar 

  11. 11.

    Zeng, X.-P., Cao, Z.-Y., Wang, Y.-H., Zhou, F. & Zhou, J. Catalytic enantioselective desymmetrization reactions to all-carbon quaternary stereocenters. Chem. Rev. 116, 7330–7396 (2016).

    CAS  Article  Google Scholar 

  12. 12.

    Petersen, K. S. Nonenzymatic enantioselective synthesis of all-carbon quaternary centers through desymmetrization. Tetrahedron Lett. 56, 6523–6535 (2015).

    CAS  Article  Google Scholar 

  13. 13.

    de María, P. D., García-Burgos, C. A., Bargeman, G. & van Gemert, R. W. Pig liver esterase (PLE) as biocatalyst in organic synthesis: from nature to cloning and to practical applications. Synthesis 1439-1452 (2007).

  14. 14.

    García-Urdiales, E., Alfonso, I. & Gotor, V. Enantioselective enzymatic desymmetrizations in organic synthesis. Chem. Rev. 105, 313–354 (2005).

    Article  Google Scholar 

  15. 15.

    Toone, E. J., Werth, M. J. & Jones, J. B. Enzymes in organic synthesis. 47. Active-site model for interpreting and predicting the specificity of pig liver esterase. J. Am. Chem. Soc. 112, 4946–4952 (1990).

    CAS  Article  Google Scholar 

  16. 16.

    Provencher, L. & Jones, J. B. A concluding specification of the dimensions of the active site model of pig liver esterase. J. Org. Chem. 59, 2729–2732 (1994).

    CAS  Article  Google Scholar 

  17. 17.

    Björkling, F. et al. Enzyme catalysed hydrolysis of dialkylated propanedioic acid diesters, chain length dependent reversal of enantioselectivity. Tetrahedron 41, 1347–1352 (1985).

    Article  Google Scholar 

  18. 18.

    Musidlowska, A., Lange, S. & Bornscheuer, U. T. By overexpression in the yeast Pichia pastoris to enhanced enantioselectivity: new aspects in the application of pig liver esterase. Angew. Chem. Int. Ed. 40, 2851–2853 (2001).

    CAS  Article  Google Scholar 

  19. 19.

    Smith, M. E. et al. Investigation of the cosolvent effect on six isoenzymes of PLE in the enantioselective hydrolysis of selected α,α-disubstituted malonate esters. ChemCatChem 4, 472–475 (2012).

    CAS  Article  Google Scholar 

  20. 20.

    Wilent, J. & Petersen, K. S. Enantioselective desymmetrization of diesters. J. Org. Chem. 79, 2303–2307 (2014).

    CAS  Article  Google Scholar 

  21. 21.

    Karad, S. N., Panchal, H., Clarke, C., Lewis, W. & Lam, H. W. Enantioselective synthesis of chiral cyclopent-2-enones by nickel-catalyzed desymmetrization of malonate esters. Angew. Chem. Int. Ed. 57, 9122–9125 (2018).

    CAS  Article  Google Scholar 

  22. 22.

    Selmani, A. & Darses, S. Enantioenriched 1-tetralones via rhodium-catalyzed arylative cascade desymmetrization/acylation of alkynylmalonates. Org. Lett. 21, 8122–8126 (2019).

    CAS  Article  Google Scholar 

  23. 23.

    Marciniec, B. (ed.) Hydrosilylation: A Comprehensive Review on Recent Advances (Springer, 2009).

  24. 24.

    Rendler, S. & Oestreich, M. in Modern Reduction Methods (eds Andersson, P. G. & Munslow, I. J.) 183–207 (Wiley, 2008).

  25. 25.

    Díez-González, S. & Nolan, S. P. Transition metal-catalyzed hydrosilylation of carbonyl compounds and imines. A review. Org. Prep. Proced. Int. 39, 523–559 (2007).

    Article  Google Scholar 

  26. 26.

    Uvarov, V. M. & de Vekki, D. A. Recent progress in the development of catalytic systems for homogenous asymmetric hydrosilylation of ketones. J. Organomet. Chem. 923, 121415 (2020).

    CAS  Article  Google Scholar 

  27. 27.

    Mimoun, H., de Saint Laumer, J. Y., Giannini, L., Scopelliti, R. & Floriani, C. Enantioselective reduction of ketones by polymethylhydrosiloxane in the presence of chiral zinc catalysts. J. Am. Chem. Soc. 121, 6158–6166 (1999).

    CAS  Article  Google Scholar 

  28. 28.

    Mimoun, H. Selective reduction of carbonyl compounds by polymethylhydrosiloxane in the presence of metal hydride catalysts. J. Org. Chem. 64, 2582–2589 (1999).

    CAS  Article  Google Scholar 

  29. 29.

    Das, S., Möller, K., Junge, K. & Beller, M. Zinc-catalyzed chemoselective reduction of esters to alcohols. Chem. Eur. J. 17, 7414–7417 (2011).

    CAS  Article  Google Scholar 

  30. 30.

    Enthaler, S. & Wu, X.-F. (eds) Zinc Catalysis: Applications in Organic Synthesis (Wiley, 2015).

  31. 31.

    Enthaler, S. Rise of the zinc age in homogeneous catalysis? ACS Catal. 3, 150–158 (2013).

    CAS  Article  Google Scholar 

  32. 32.

    Wu, X. & Neumann, H. Zinc-catalyzed organic synthesis: C–C, C–N, C–O bond formation reactions. Adv. Synth. Catal. 354, 3141–3160 (2012).

    CAS  Article  Google Scholar 

  33. 33.

    Trost, B. M., Hung, C.-I. & Mata, G. Dinuclear metal‐prophenol catalysts: development and synthetic applications. Angew. Chem. Int. Ed. 59, 4240–4261 (2020).

    CAS  Article  Google Scholar 

  34. 34.

    Trost, B. M. & Mino, T. Desymmetrization of meso 1,3- and 1,4-diols with a dinuclear zinc asymmetric catalyst. J. Am. Chem. Soc. 125, 2410–2411 (2003).

    CAS  Article  Google Scholar 

  35. 35.

    Liu, Y., Han, S.-J., Liu, W.-B. & Stoltz, B. M. Catalytic enantioselective construction of quaternary stereocenters: assembly of key building blocks for the synthesis of biologically active molecules. Acc. Chem. Res. 48, 740–751 (2015).

    CAS  Article  Google Scholar 

  36. 36.

    Yang, Y., Cho, I., Qi, X., Liu, P. & Arnold, F. H. An enzymatic platform for the asymmetric amination of primary, secondary and tertiary C(sp3)–H bonds. Nat. Chem. 11, 987–993 (2019).

    CAS  Article  Google Scholar 

  37. 37.

    Zhang, F.-H., Zhang, F.-J., Li, M.-L., Xie, J.-H. & Zhou, Q.-L. Enantioselective hydrogenation of dialkyl ketones. Nat. Catal. 3, 621–627 (2020).

    CAS  Article  Google Scholar 

  38. 38.

    Walsh, P. J. & Kozlowski, M. C. in Fundamentals of Asymmetric Catalysis 297–329 (University Science Books, 2009).

  39. 39.

    Ushio, H. & Mikami, K. Asymmetric reduction of ortho-multisubstituted benzophenones catalyzed by diamine–Zn–diol complexes. Tetrahedron Lett. 46, 2903–2906 (2005).

    CAS  Article  Google Scholar 

Download references


We thank the University of Hong Kong for a start-up fund. We acknowledge funding support from the Laboratory for Synthetic Chemistry and Chemical Biology under the Health@InnoHK Program launched by the Innovation and Technology Commission, the Government of HKSAR. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. C.-M. Che and P. Chiu are acknowledged for their kind support and sharing of chemicals. K.-H. Low, J. Yip and B. Yan are acknowledged for X-ray crystallography, mass spectroscopy and NMR spectroscopy, respectively. We also thank L. Wu for helpful discussion.

Author information




Z.H. conceived and designed the project. P.X. and Z.H. carried out the experiments, analysed the data and wrote the manuscript.

Corresponding author

Correspondence to Zhongxing Huang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Chemistry thanks Marcin Kwit and the other, anonymous, reviewers(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1 and 2, experimental procedures, product characterization data and mechanistic studies.

Supplementary Data

Crystallographic data for compound 50a; CCDC reference 2025159.

Source data

Source Data Fig. 2c

Statistical Source Data.

Source Data Fig. 4a

Statistical Source Data.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xu, P., Huang, Z. Catalytic reductive desymmetrization of malonic esters. Nat. Chem. (2021).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing