Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A versatile living polymerization method for aromatic amides

Abstract

Polycondensation polymers typically follow step-growth kinetics assuming all functional groups are equally likely to react with one another. If the reaction rates with the chain end can be selectively accelerated, living polymers can be obtained. Here we report on two chlorophosphonium iodide reagents that have been synthesized from triphenylphosphine and tri(o-methoxyphenyl)phosphine. The former activates aromatic carboxylic acids as acid chlorides in the presence of secondary aromatic amines and the latter even in the presence of primary aromatic amines. These reagents allow p-aminobenzoic acid derivatives to form solution-stable activated monomers that polymerize in a living fashion in the presence of amine initiators. Other aryl amino acids and even dimers of aryl amino acids can be polymerized in a living fashion when slowly added to the phosphonium salt in the presence of an amine initiator. Diblock copolymers and triblock terpolymers of aryl amino acids can be prepared even in the presence of electrophilic functional groups.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Living polymerization of aromatic amino acids.
Fig. 2: GPC analysis showing the living nature of the polymers prepared.
Fig. 3: GPC analysis of copolymers.
Fig. 4: GPC analysis of polymers PH1–PH3 before and after N-deprotection.
Fig. 5: AFM analysis of helical polymer PJ1C with a declared tip radius of less than 10 nm.

Data availability

All data generated and analysed during this study are included in this article and its Supplementary Information. Crystallographic data for the structures reported in this article have been deposited at the Cambridge Crystallographic Data Centre, under deposition nos. CCDC 1983404 (PHOS1) and 1983405 (PHOS2). Copies of the data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif. Source data are provided with this paper.

References

  1. Carothers, W. H. Polymers and polyfunctionality. Trans. Faraday Soc. 32, 39–49 (1936).

    Article  CAS  Google Scholar 

  2. Merrifield, R. B. Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J. Am. Chem. Soc. 85, 2149–2154 (1963).

    Article  CAS  Google Scholar 

  3. Koenig, H. M., Gorelik, T., Kolb, U. & Kilbinger, A. F. M. Supramolecular PEG−co-Oligo(p-benzamide)s prepared on a peptide synthesizer. J. Am. Chem. Soc. 129, 704–708 (2007).

    Article  CAS  Google Scholar 

  4. Baptiste, B., Douat-Casassus, C., Laxmi-Reddy, K., Godde, F. & Huc, I. Solid phase synthesis of aromatic oligoamides: application to helical water-soluble foldamers. J. Org. Chem. 75, 7175–7185 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Lutz, J.-F. Defining the field of sequence-controlled polymers. Macromol. Rapid Commun. 38, 1700582 (2017).

    Article  Google Scholar 

  6. Lutz, J.-F., Ouchi, M., Liu, D. R. & Sawamoto, M. Sequence-controlled polymers. Science 341, 1238149 (2013).

    Article  PubMed  Google Scholar 

  7. Gutekunst, W. R. & Hawker, C. J. A general approach to sequence-controlled polymers using macrocyclic ring opening metathesis polymerization. J. Am. Chem. Soc. 137, 8038–8041 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Huang, Z. et al. Discrete and stereospecific oligomers prepared by sequential and alternating single unit monomer insertion. J. Am. Chem. Soc. 140, 13392–13406 (2018).

    Article  CAS  PubMed  Google Scholar 

  9. Anastasaki, A. et al. One-pot synthesis of ABCDE multiblock copolymers with hydrophobic, hydrophilic, and semi-fluorinated segments. Angew. Chem. Int. Ed. 56, 14483–14487 (2017).

    Article  CAS  Google Scholar 

  10. Dawson, S. J., Hu, X., Claerhout, S. & Huc, I. Methods Enzymol. 580, 279–301 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Yokozawa, T. & Yokoyama, A. Chain-growth condensation polymerization for the synthesis of well-defined condensation polymers and π-conjugated polymers. Chem. Rev. 109, 5595–5619 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Yokozawa, T. & Ohta, Y. Transformation of step-growth polymerization into living chain-growth polymerization. Chem. Rev. 116, 1950–1968 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Yokozawa, T. & Ohta, Y. Scope of controlled synthesis via chain-growth condensation polymerization: from aromatic polyamides to π-conjugated polymers. Chem. Commun. 49, 8281–8310 (2013).

    Article  CAS  Google Scholar 

  14. Badoux, M. & Kilbinger, A. F. M. Synthesis of high molecular weight poly(p-benzamide)s. Macromolecules 50, 4188–4197 (2017).

    Article  CAS  Google Scholar 

  15. Yokozawa, T., Asai, T., Sugi, R., Ishigooka, S. & Hiraoka, S. Chain-growth polycondensation for nonbiological polyamides of defined architecture. J. Am. Chem. Soc. 122, 8313–8314 (2000).

    Article  CAS  Google Scholar 

  16. Ziach, K. et al. Single helically folded aromatic oligoamides that mimic the charge surface of double-stranded B-DNA. Nat. Chem. 10, 511–518 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. Rogers, J. M. et al. Ribosomal synthesis and folding of peptide-helical aromatic foldamer hybrids. Nat. Chem. 10, 405–412 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. De, S. et al. Designing cooperatively folded abiotic uni- and multimolecular helix bundles. Nat. Chem. 10, 51–57 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. Gan, Q. et al. Translation of rod-like template sequences into homochiral assemblies of stacked helical oligomers. Nat. Nanotechnol. 12, 447–452 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chandramouli, N. et al. Iterative design of a helically folded aromatic oligoamide sequence for the selective encapsulation of fructose. Nat. Chem. 7, 334–341 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Gan, Q. et al. Science 331, 1172–1175 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Cao, J. et al. Preparation and helical folding of aromatic polyamides. Chem. Commun. 48, 11112–11114 (2012).

    Article  CAS  Google Scholar 

  23. Yuan, L. et al. Helical aromatic oligoamides: reliable, readily predictable folding from the combination of rigidified structural motifs. J. Am. Chem. Soc. 126, 16528–16537 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Gong, B. et al. Creating nanocavities of tunable sizes: Hollow helices. Proc. Natl Acad. Sci. USA 99, 11583–11588 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Leggio, A. et al. Formation of amides: one-pot condensation of carboxylic acids and amines mediated by TiCl4. Chem. Cent. J. 11, 87 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lundberg, H., Tinnis, F., Selander, N. & Adolfsson, H. Catalytic amide formation from non-activated carboxylic acids and amines. Chem. Soc. Rev. 43, 2714–2742 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Montalbetti, C. & Falque, V. Amide bond formation and peptide coupling. Tetrahedron 61, 10827–10852 (2005).

    Article  CAS  Google Scholar 

  28. Ali, M. F. & Harris, G. S. Chlorine-containing mixed halogen adducts of triphenylphosphine, triphenylarsine, and triphenylstibine. J. Chem. Soc. Dalton 0, 1545–1549 (1980).

    Article  CAS  Google Scholar 

  29. Montanari, V., Quici, S. & Resnati, G. 1-Iodo-perfluoroalkanes from polyfluoroalkoxy trimethylsilanes and iodochloro triphenylphosphorane. Tetrahedron Lett. 35, 1941–1944 (1994).

    Article  CAS  Google Scholar 

  30. Nikitin, K., Jennings, E. V., Sulaimi, Al, S., Ortin, Y. & Gilheany, D. G. Dynamic cross-exchange in halophosphonium species: direct observation of stereochemical inversion in the course of an SN2 process. Angew. Chem. Int. Ed. 57, 1480–1484 (2018).

    Article  CAS  Google Scholar 

  31. Quin, L. & Williams, A. Practical interpretation of P-31 NMR Spectra and Computer-Assisted Structure Verification (Wiley-VCH, 2004).

  32. Godfrey, S. M., McAucliffe, C. A., Pritchard, R. G., Sheffield, J. M. & Thompson, G. M. Structure of R3PCl2 compounds in the solid state and in solution: dependency of structure on R. Crystal structures of trigonal bipyramidal (C6F5)3PCl2, Ph2(C6F5)PCl2 and of ionic Prn3PCl2 J. Chem. Soc. Dalton 0, 4823–4828 (1997).

    Article  CAS  Google Scholar 

  33. Gonnella, N. C. et al. 31P Solid state NMR study of structure and chemical stability of dichlorotriphenylphosphorane. Magn. Reson. Chem. 47, 461–464 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Voronkov, M. G., Vlasova, N. N. & Vlasov, A. V. Acyl iodides in organic and organoelement chemistry. Russ. Chem. Bull. 62, 1945–1961 (2013).

    Article  CAS  Google Scholar 

  35. Hoffmann, H. & Haase, K. The synthesis of acyl iodides. Synthesis 1981, 715–719 (1981).

  36. Tanatani, A. et al. Helical structures of N-alkylated poly(p-benzamide)s. J. Am. Chem. Soc. 127, 8553–8561 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Mikami, K. & Yokozawa, T. Helical folding of poly(naphthalenecarboxamide) in apolar solvent. J Polym. Sci. Pol. Chem. 51, 739–742 (2013).

    Article  CAS  Google Scholar 

  38. Mikama, K., Daikuhara, H., Kasama, J., Yokoyama, A. & Yokozawa, T. Synthesis of Poly(naphthalenecarboxamide)s with low polydispersity by chain-growth condensation polymerization. J. Polym. Sci. A 49, 3020–3029 (2011).

    Article  Google Scholar 

  39. Sugi, R., Yokoyama, A., Furuyama, T., Uchiyama, M. & Yokozawa, T. Inductive effect-assisted chain-growth polycondensation. synthetic development from para- to meta-substituted aromatic polyamides with low polydispersities. J. Am. Chem. Soc. 127, 10172–10173 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Ohishi, T., Sugi, R., Yokoyama, A. & Yokozawa, T. A variety of poly(m-benzamide)s with low polydispersities from inductive effect-assisted chain-growth polycondensation. J. Polym. Sci. Pol. Chem. 44, 4990–5003 (2006).

    Article  CAS  Google Scholar 

  41. Hanselmann, R., Holter, D. & Frey, H. Hyperbranched polymers prepared via the core-dilution/slow addition technique: computer simulation of molecular weight distribution and degree of branching. Macromolecules 31, 3790–3801 (1998).

    Article  CAS  Google Scholar 

  42. Sawamoto, M. & Kennedy, J. P. Quasiliving carbocationic polymerization. VI. Quasiliving polymerization of isobutyl vinyl ether. J. Macromol. Sci. A A18, 1275–1291 (1982).

    Article  CAS  Google Scholar 

  43. Sawamoto, M. & Kennedy, J. P. Quasiliving carbocationic polymerization. VIII. Quasiliving polymerization of methyl vinyl ether and its blocking from quasiliving poly(isobutyl vinyl ether) dication. J. Macromol. Sci. A A18, 1301–1313 (1982).

    Article  CAS  Google Scholar 

  44. Urushibara, K. et al. Synthesis and conformational analysis of alternately N-alkylated aromatic amide oligomers. J. Org. Chem. 83, 14338–14349 (2018).

    Article  CAS  PubMed  Google Scholar 

  45. Gong, B. Hollow crescents, helices, and macrocycles from enforced folding and folding-assisted macrocyclization. Accounts Chem. Res. 41, 1376–1386 (2008).

    Article  CAS  Google Scholar 

  46. König, H. M., Abbel, R., Schollmeyer, D. & Kilbinger, A. F. M. Solid-phase synthesis of oligo(p-benzamide) foldamers. Org. Lett. 8, 1819–1822 (2006).

    Article  PubMed  Google Scholar 

  47. Alizadeh, M. & Kilbinger, A. F. M. Synthesis of telechelic poly(p-benzamide)s. Macromolecules 51, 4363–4369 (2018).

    Article  CAS  Google Scholar 

  48. Orbelli Biroli, A. et al. Highly improved performance of ZnII tetraarylporphyrinates in DSSCs by the presence of octyloxy chains in the aryl rings. J. Mater. Chem. A 3, 2954–2959 (2015).

    Article  CAS  Google Scholar 

  49. Pal, S., Lucarini, F., Ruggi, A. & Kilbinger, A. F. M. Functional metathesis catalyst through ring closing enyne metathesis: one pot protocol for living heterotelechelic polymers. J. Am. Chem. Soc. 140, 3181–3185 (2018).

    Article  CAS  PubMed  Google Scholar 

  50. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Cryst. 42, 339–341 (2009).

    Article  CAS  Google Scholar 

  51. Sheldrick, G. M. SHELXT—integrated space-group and crystal-structure determination. Acta Cryst. A 71, 3–8 (2015).

    Article  Google Scholar 

  52. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Cryst. C 71, 3–8 (2015).

    Article  Google Scholar 

  53. Brandenburg, K. & Berndt, M. DIAMOND v.4.6.5 (Crystal Impact, 1999).

  54. Markiewicz, P. & Goh, M. C. Simulation of atomic force microscope tip–sample/sample–tip reconstruction. J. Vac. Sci. Technol. B 13, 1115–1118 (1995).

    Article  CAS  Google Scholar 

  55. Sader, J. E., Chon, J. W. & Mulvaney, P. Calibration of rectangular atomic force microscope cantilevers. Rev. Sci. Instrum. 70, 3967–3969 (1999).

    Article  CAS  Google Scholar 

  56. Hutter, J. L. & Bechhoefer, J. Calibration of atomic-force microscope tips. Rev. Sci. Instrum. 64, 1868–1873 (1993).

    Article  CAS  Google Scholar 

  57. Nečas, D. & Klapetek, P. Gwyddion: an open-source software for SPM data analysis. Cent. Eur. J. Phys. 10, 181–188 (2012).

    Google Scholar 

Download references

Acknowledgements

We thank A. Coskun and S. Salentinig for helpful comments and F. Karasu Kilic for GPC measurements. Funding was provided by the National Center for Competence in Research (NCCR) Bio-Inspired Materials.

Author information

Authors and Affiliations

Authors

Contributions

S.P. and A.F.M.K. designed the experiments, S.P. synthesized all phosphorous reagents, performed all polymerizations and performed all molecular and polymer analyses. D.P.T.N. and M.A. synthesized monomers, A.M. repeated and confirmed the polymerization experiments. A.C. performed the X-ray single-crystal analysis, R.O. and A.P.-F. performed atomic force microscope measurements. All authors reviewed the manuscript.

Corresponding author

Correspondence to Andreas F. M. Kilbinger.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Chemistry thanks Tsutomu Yokozawa and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Materials and instrumentation. Syntheses of monomers, initiators, activation reagents and polymers. NMR, GPC, MALDI-TOF MS, high-resolution mass spectra, AFM analyses, ultraviolet absorption and fluorescence spectra, circular dichroism spectra and ab initio calculations. Supplementary Scheme 1, Figs. 1–323 and Tables 1–9.

Supplementary Data 1

CIF file for PHOS1 (CCDC reference: 1983404).

Supplementary Data 2

CIF file for PHOS2 (CCDC reference: 1983405).

Source data

Source Data Fig. 2

Raw data including number average molecular weight, dispersity and monomer/initiator ratio as shown in Fig. 2a–f.

Source Data Fig. 3

Raw SEC data including time and number average molecular weight of the first polymer block and the diblock copolymer as shown in Fig. 3a–h.

Source Data Fig. 4

Raw data including number average molecular weight, dispersity and monomer/initiator ratio for both, the N-protected and N-deprotected polymer as shown in Fig. 4.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pal, S., Nguyen, D.P.T., Molliet, A. et al. A versatile living polymerization method for aromatic amides. Nat. Chem. 13, 705–713 (2021). https://doi.org/10.1038/s41557-021-00712-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-021-00712-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing