Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Dinitrogen binding and activation at a molybdenum–iron–sulfur cluster


The Fe–S clusters of nitrogenases carry out the life-sustaining conversion of N2 to NH3. Although progress continues to be made in modelling the structural features of nitrogenase cofactors, no synthetic Fe–S cluster has been shown to form a well-defined coordination complex with N2. Here we report that embedding an [MoFe3S4] cluster in a protective ligand environment enables N2 binding at Fe. The bridging [MoFe3S4]2(μ-η11-N2) complex thus prepared features a substantially weakened N–N bond despite the relatively high formal oxidation states of the metal centres. Substitution of one of the [MoFe3S4] cubanes with an electropositive Ti metalloradical induces additional charge transfer to the N2 ligand with generation of Fe–N multiple-bond character. Structural and spectroscopic analyses demonstrate that N2 activation is accompanied by shortened Fe–S distances and charge transfer from each Fe site, including those not directly bound to N2. These findings indicate that covalent interactions within the cluster play a critical role in N2 binding and activation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Strategy for binding N2 at a synthetic [MoFe3S4] cluster.
Fig. 2: Synthesis of [MoFe3S4–N2] complexes.
Fig. 3: Characterization of [MoFe3S4–N2] complexes.
Fig. 4: Spectroscopic and structural evidence for increasing cluster covalency in the series 1–3.

Data availability

Crystallographic data for compounds were deposited in the Cambridge Structural Database under deposition numbers 2058639 (1), 2058637 (2), and 2058638 (3). Other data that support the findings of this study can be found in the article and Supplementary Information; alternatively, this information is also available upon request to the corresponding author.


  1. 1.

    Canfield, D. E., Glazer, A. N. & Falkowski, P. G. The evolution and future of Earth’s nitrogen cycle. Science 330, 192–196 (2010).

    CAS  PubMed  Google Scholar 

  2. 2.

    Zhang, X., Ward, B. B. & Sigman, D. M. Global nitrogen cycle: critical enzymes, organisms, and processes for nitrogen budgets and dynamics. Chem. Rev. 120, 5308–5351 (2020).

    CAS  PubMed  Google Scholar 

  3. 3.

    Kim, J. S. & Rees, D. C. Structural models for the metal centers in the nitrogenase molybdenum–iron protein. Science 257, 1677–1682 (1992).

    CAS  PubMed  Google Scholar 

  4. 4.

    Einsle, O. et al. Nitrogenase MoFe-protein at 1.16 angstrom resolution: a central ligand in the FeMo-cofactor. Science 297, 1696–1700 (2002).

    CAS  PubMed  Google Scholar 

  5. 5.

    Lancaster, K. M. et al. X-ray emission spectroscopy evidences a central carbon in the nitrogenase iron–molybdenum cofactor. Science 334, 974–977 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Spatzal, T. et al. Evidence for interstitial carbon in nitrogenase FeMo cofactor. Science 334, 940–940 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Dos Santos, P. C. et al. Substrate interactions with the nitrogenase active site. Acc. Chem. Res. 38, 208–214 (2005).

    PubMed  Google Scholar 

  8. 8.

    Seefeldt, L. C., Hoffman, B. M. & Dean, D. R. Mechanism of Mo-dependent nitrogenase. Annu. Rev. Biochem. 78, 701–722 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Hoffman, B. M., Dean, D. R. & Seefeldt, L. C. Climbing nitrogenase: toward a mechanism of enzymatic nitrogen fixation. Acc. Chem. Res. 42, 609–619 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Hoffman, B. M., Lukoyanov, D., Dean, D. R. & Seefeldt, L. C. Nitrogenase: a draft mechanism. Acc. Chem. Res. 46, 587–595 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Hoffman, B. M., Lukoyanov, D., Yang, Z. Y., Dean, D. R. & Seefeldt, L. C. Mechanism of nitrogen fixation by nitrogenase: the next stage. Chem. Rev. 114, 4041–4062 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Spatzal, T., Perez, K. A., Einsle, O., Howard, J. B. & Rees, D. C. Ligand binding to the FeMo-cofactor: structures of CO-bound and reactivated nitrogenase. Science 345, 1620–1623 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Sippel, D. et al. A bound reaction intermediate sheds light on the mechanism of nitrogenase. Science 359, 1484–1489 (2018).

    CAS  PubMed  Google Scholar 

  14. 14.

    Kang, W., Lee, C. C., Jasniewski, A. J., Ribbe, M. W. & Hu, Y. Structural evidence for a dynamic metallocofactor during N2 reduction by Mo-nitrogenase. Science 368, 1381–1385 (2020).

    CAS  PubMed  Google Scholar 

  15. 15.

    Buscagan, T. M., Perez, K. A., Maggiolo, A. O., Rees, D. C. & Spatzal, T. Structural characterization of two CO molecules bound to the nitrogenase active site. Angew. Chem. Int. Ed. 60, 5704–5707 (2021).

    CAS  Google Scholar 

  16. 16.

    Peters, J. W. et al. Comment on ‘Structural evidence for a dynamic metallocofactor during N2 reduction by Mo-nitrogenase’. Science 371, eabe5481 (2021).

  17. 17.

    Bergmann, J., Oksanen, E. & Ryde, U. Critical evaluation of a crystal structure of nitrogenase with bound N2 ligands. J. Biol. Inorg. Chem. 26, 341–353 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Lee, S. C. & Holm, R. H. The clusters of nitrogenase: synthetic methodology in the construction of weak-field clusters. Chem. Rev. 104, 1135–1157 (2004).

    CAS  PubMed  Google Scholar 

  19. 19.

    Tanifuji, K. & Ohki, Y. Metal–sulfur compounds in N2 reduction and nitrogenase-related chemistry. Chem. Rev. 120, 5194–5251 (2020).

    CAS  PubMed  Google Scholar 

  20. 20.

    Tanaka, K., Hozumi, Y. & Tanaka, T. Dinitrogen fixation catalyzed by the reduced species of [Fe4S4(SPh)4]2– and [Mo2Fe6S8(SPh)9]3–. Chem. Lett. 11, 1203–1206 (1982).

    Google Scholar 

  21. 21.

    Hozumi, Y., Imasaka, Y., Tanaka, K. & Tanaka, T. Catalytic reduction of hydrazine to ammonia by the reduced species of [Mo2Fe6S8SPh9]3– and [Fe4S4SPh4]2–, [Mo2Fe6S8SCH2CH2OH9]3– and [Fe4S4SCH2CH2OH4]2–. Chem. Lett. 12, 897–900 (1983).

    Google Scholar 

  22. 22.

    Coucouvanis, D. et al. The catalytic reduction of hydrazine to ammonia by the MoFe3S4 cubanes and implications regarding the function of nitrogenase—evidence for direct involvement of the molybdenum atom in substrate reduction. J. Am. Chem. Soc. 115, 12193–12194 (1993).

    CAS  Google Scholar 

  23. 23.

    Malinak, S. M., Demadis, K. D. & Coucouvanis, D. Catalytic reduction of hydrazine to ammonia by the VFe3S4 cubanes—further evidence for the direct involvement of the heterometal in the reduction of nitrogenase substrates and possible relevance to the vanadium nitrogenases. J. Am. Chem. Soc. 117, 3126–3133 (1995).

    CAS  Google Scholar 

  24. 24.

    Malinak, S. M., Simeonov, A. M., Mosier, P. E., McKenna, C. E. & Coucouvanis, D. Catalytic reduction of cis-dimethyldiazene by the [MoFe3S4]3+ clusters. The four-electron reduction of a N=N bond by a nitrogenase-relevant cluster and implications for the function of nitrogenase. J. Am. Chem. Soc. 119, 1662–1667 (1997).

    CAS  Google Scholar 

  25. 25.

    Vela, J., Stoian, S., Flaschenriem, C. J., Münck, E. & Holland, P. L. A sulfido-bridged diiron(ii) compound and its reactions with nitrogenase-relevant substrates. J. Am. Chem. Soc. 126, 4522–4523 (2004).

    CAS  PubMed  Google Scholar 

  26. 26.

    Banerjee, A. et al. Photochemical nitrogen conversion to ammonia in ambient conditions with FeMoS-chalcogels. J. Am. Chem. Soc. 137, 2030–2034 (2015).

    CAS  PubMed  Google Scholar 

  27. 27.

    DeRosha, D. E. et al. Planar three-coordinate iron sulfide in a synthetic [4Fe-3S] cluster with biomimetic reactivity. Nat. Chem. 11, 1019–1025 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Thorneley, R. N. F. & Lowe, D. J. in Metal Ions in Biology, Vol. 7 (ed Spiro, T. G.) 221–284 (Wiley, 1985).

  29. 29.

    Seefeldt, L. C. et al. Reduction of substrates by nitrogenases. Chem. Rev. 120, 5082–5106 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Venkateswara Rao, P. & Holm, R. H. Synthetic analogues of the active sites of iron-sulfur proteins. Chem. Rev. 104, 527–559 (2004).

    CAS  PubMed  Google Scholar 

  31. 31.

    Holm, R. H. & Lo, W. Structural conversions of synthetic and protein-bound iron–sulfur clusters. Chem. Rev. 116, 13685–13713 (2016).

    CAS  PubMed  Google Scholar 

  32. 32.

    Deng, L. & Holm, R. H. Stabilization of fully reduced iron–sulfur clusters by carbene ligation: the [FenSn]0 oxidation levels (n = 4, 8). J. Am. Chem. Soc. 130, 9878–9886 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Brown, A. C. & Suess, D. L. M. Controlling substrate binding to Fe4S4 clusters through remote steric effects. Inorg. Chem. 58, 5273–5280 (2019).

    CAS  PubMed  Google Scholar 

  34. 34.

    Komuro, T., Kawaguchi, H., Lang, J. P., Nagasawa, T. & Tatsumi, K. [MoFe3S4]3+ and [MoFe3S4]2+ cubane clusters containing a pentamethylcyclopentadienyl molybdenum moiety. J. Organomet. Chem. 692, 1–9 (2007).

    CAS  Google Scholar 

  35. 35.

    Singh, D., Buratto, W. R., Torres, J. F. & Murray, L. J. Activation of dinitrogen by polynuclear metal complexes. Chem. Rev. 120, 5517–5581 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Ohki, Y. et al. N2 activation on a molybdenum–titanium–sulfur cluster. Nat. Commun. 9, 3200 (2018).

    PubMed  PubMed Central  Google Scholar 

  37. 37.

    Mori, H., Seino, H., Hidai, M. & Mizobe, Y. Isolation of a cubane-type metal sulfido cluster with a molecular nitrogen ligand. Angew. Chem. Int. Ed. 46, 5431–5434 (2007).

    CAS  Google Scholar 

  38. 38.

    Liu, J. et al. Nitrogenase-mimic iron-containing chalcogels for photochemical reduction of dinitrogen to ammonia. Proc. Natl Acad. Sci. USA 113, 5530–5535 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Heim, H. C., Bernhardt, T. M., Lang, S. M., Barnett, R. N. & Landman, U. Interaction of iron–sulfur clusters with N2: biomimetic systems in the gas phase. J. Phys. Chem. C 120, 12549–12558 (2016).

    CAS  Google Scholar 

  40. 40.

    Takaoka, A., Mankad, N. P. & Peters, J. C. Dinitrogen complexes of sulfur-ligated iron. J. Am. Chem. Soc. 133, 8440–8443 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Creutz, S. E. & Peters, J. C. Diiron bridged-thiolate complexes that bind N2 at the FeiiFeii, FeiiFei and FeiFei redox states. J. Am. Chem. Soc. 137, 7310–7313 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Coric, I., Mercado, B. Q., Bill, E., Vinyard, D. J. & Holland, P. L. Binding of dinitrogen to an iron–sulfur–carbon site. Nature 526, 96–99 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Gu, N. N. X., Oyala, P. H. & Peters, J. C. An S  = ½ iron complex featuring N2, thiolate, and hydride ligands: reductive elimination of H2 and relevant thermochemical Fe–H parameters. J. Am. Chem. Soc. 140, 6374–6382 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Smith, J. M. et al. Studies of low-coordinate iron dinitrogen complexes. J. Am. Chem. Soc. 128, 756–769 (2006).

    CAS  PubMed  Google Scholar 

  45. 45.

    Chomitz, W. A. & Arnold, J. Transition metal dinitrogen complexes supported by a versatile monoanionic [N2P2] ligand. Chem. Commun. 45, 4797–4799 (2007).

    Google Scholar 

  46. 46.

    McSkimming, A. & Harman, W. H. A terminal N2 complex of high-spin iron(i) in a weak, trigonal ligand field. J. Am. Chem. Soc. 137, 8940–8943 (2015).

    CAS  PubMed  Google Scholar 

  47. 47.

    Suzuki, T. et al. N2 activation by an iron complex with a strong electron-donating iminophosphorane ligand. Inorg. Chem. 54, 9271–9281 (2015).

    CAS  PubMed  Google Scholar 

  48. 48.

    Geri, J. B., Shanahan, J. P. & Szymczak, N. K. Testing the push–pull hypothesis: Lewis acid augmented N2 activation at iron. J. Am. Chem. Soc. 139, 5952–5956 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Horacek, M. et al. Bis[η5-tetramethyl(trimethylsilyl)cyclopentadienyl]titanium(ii) and its π-complexes with bis(trimethylsilyl)acetylene and ethylene. Organometallics 18, 3572–3578 (1999).

    CAS  Google Scholar 

  50. 50.

    Lee, Y., Mankad, N. P. & Peters, J. C. Triggering N2 uptake via redox-induced expulsion of coordinated NH3 and N2 silylation at trigonal bipyramidal iron. Nat. Chem. 2, 558–565 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Moret, M. E. & Peters, J. C. N2 functionalization at iron metallaboratranes. J. Am. Chem. Soc. 133, 18118–18121 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Rittle, J. & Peters, J. C. Fe–N2/CO complexes that model a possible role for the interstitial C atom of FeMo-cofactor (FeMoco). Proc. Natl Acad. Sci. USA 110, 15898–15903 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Ung, G. & Peters, J. C. Low-temperature N2 binding to two-coordinate L2Fe0 enables reductive trapping of L2FeN2 and NH3 generation. Angew. Chem. Int. Ed. 54, 532–535 (2015).

    CAS  Google Scholar 

  54. 54.

    Piascik, A. D. et al. Cationic silyldiazenido complexes of the Fe(diphosphine)2(N2) platform: structural and electronic models for an elusive first intermediate in N2 fixation. Chem. Commun. 53, 7657–7660 (2017).

    CAS  Google Scholar 

  55. 55.

    Saouma, C. T. & Peters, J. C. M≡E and M=E complexes of iron and cobalt that emphasize three-fold symmetry (E = O, N, NR). Coord. Chem. Rev. 255, 920–937 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Cook, M. & Karplus, M. Electronic-structure of the MoFe3S4(SH)63– ion. J. Am. Chem. Soc. 107, 257–259 (1985).

    CAS  Google Scholar 

  57. 57.

    Bjornsson, R. et al. Identification of a spin-coupled Mo(iii) in the nitrogenase iron–molybdenum cofactor. Chem. Sci. 5, 3096–3103 (2014).

    CAS  Google Scholar 

  58. 58.

    Kowalska, J. K. et al. X-ray magnetic circular dichroism spectroscopy applied to nitrogenase and related models: experimental evidence for a spin-coupled molybdenum(iii) center. Angew. Chem. Int. Ed. 58, 9373–9377 (2019).

    CAS  Google Scholar 

  59. 59.

    Noodleman, L., Peng, C. Y., Case, D. A. & Mouesca, J. M. Orbital interactions, electron delocalization and spin coupling in iron–sulfur clusters. Coord. Chem. Rev. 144, 199–244 (1995).

    CAS  Google Scholar 

  60. 60.

    Holland, P. L. Metal–dioxygen and metal–dinitrogen complexes: where are the electrons? Dalton Trans. 39, 5415–5425 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Tan, L. L., Holm, R. H. & Lee, S. C. Structural analysis of cubane-type iron clusters. Polyhedron 58, 206–217 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Pandelia, M. E., Lanz, N. D., Booker, S. J. & Krebs, C. Mössbauer spectroscopy of Fe/S proteins. Biochim. Biophys. Acta Mol. Cell Res. 1853, 1395–1405 (2015).

  63. 63.

    Zhang, Y. G. & Holm, R. H. Synthesis of a molecular Mo2Fe6S9 cluster with the topology of the P–N cluster of nitrogenase by rearrangement of an edge-bridged Mo2Fe6S8 double cubane. J. Am. Chem. Soc. 125, 3910–3920 (2003).

    CAS  PubMed  Google Scholar 

  64. 64.

    Xi, B. & Holm, R. H. The [MoFe3S4]2+ oxidation state: synthesis, substitution reactions, and structures of phosphine-ligated cubane-type clusters with the S  = 2 ground state. Inorg. Chem. 50, 6280–6288 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Zhang, Y. G., Zuo, J. L., Zhou, H. C. & Holm, R. H. Rearrangement of symmetrical dicubane clusters into topological analogues of the P cluster of nitrogenase: nature’s choice? J. Am. Chem. Soc. 124, 14292–14293 (2002).

    CAS  PubMed  Google Scholar 

  66. 66.

    Powers, T. M. & Betley, T. A. Testing the polynuclear hypothesis: multielectron reduction of small molecules by triiron reaction sites. J. Am. Chem. Soc. 135, 12289–12296 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Lukoyanov, D. A. et al. Electron redistribution within the nitrogenase active site FeMo-cofactor during reductive elimination of H2 to achieve N≡N triple-bond activation. J. Am. Chem. Soc. 142, 21679–21690 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Bantreil, X. & Nolan, S. P. Synthesis of N-heterocyclic carbene ligands and derived ruthenium olefin metathesis catalysts. Nat. Protoc. 6, 69–77 (2011).

    CAS  PubMed  Google Scholar 

  69. 69.

    Horacek, M., Polasek, M., Kupfer, V., Thewalt, U. & Mach, K. Syntheses and crystal structures of dichlorobis[tetramethyl(phenyl)cyclopentadienyl]titanium(iv) and chlorobis[tetramethyl(phenyl)cyclopentadienyl]-titanium(iii). Collect. Czech Chem. C 64, 61–72 (1999).

    CAS  Google Scholar 

  70. 70.

    Hanna, T. E., Lobkovsky, E. & Chirik, P. J. Mono(dinitrogen) and carbon monoxide adducts of bis(cyclopentadienyl) titanium sandwiches. J. Am. Chem. Soc. 128, 6018–6019 (2006).

    CAS  PubMed  Google Scholar 

  71. 71.

    MestReNova v.12.0, Mestrelab Research, (2017).

  72. 72.

    Schubert, E. M. Utilizing the Evans method with a superconducting NMR spectrometer in the undergraduate laboratory. J. Chem. Educ. 69, 62 (1992).

    CAS  Google Scholar 

  73. 73.

    Bain, G. A. & Berry, J. F. Diamagnetic corrections and Pascal’s constants. J. Chem. Educ. 85, 532–536 (2008).

    CAS  Google Scholar 

  74. 74.

    Prisecaru, I. WMOSS4 Mössbauer spectral analysis software, (2016).

  75. 75.

    Stoll, S. & Schweiger, A. EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J. Magn. Reson. 178, 42–55 (2006).

    CAS  PubMed  Google Scholar 

  76. 76.

    SADABS, v.2014/5 (Bruker AXS, 2001).

  77. 77.

    Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. J. Appl. Crystallogr. 48, 3–10 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Sheldrick, G. M. SHELXT—integrated space-group and crystal-structure determination. Acta Crystallogr. A 71, 3–8 (2015).

    Google Scholar 

  79. 79.

    Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. C 71, 3–8 (2015).

    Google Scholar 

  80. 80.

    Müller, P. Practical suggestions for better crystal structures. Crystallogr. Rev. 15, 57–83 (2009).

    Google Scholar 

Download references


We thank N. B. Thompson for assistance with Mössbauer spectroscopic experiments and P. Müller for assistance with X-ray crystallographic experiments. We acknowledge the MIT Research Support Committee Fund for financial support of this work.

Author information




A.M. performed the experiments. A.M. and D.L.M.S. designed the research, analysed the data, and wrote the manuscript.

Corresponding author

Correspondence to Daniel L. M. Suess.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–15, Tables 1–6, discussion.

Crystallographic data 1

CIF file for compound 1

Crystallographic data 2

CIF file for compound 2

Crystallographic data 3

CIF file for compound 3

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

McSkimming, A., Suess, D.L.M. Dinitrogen binding and activation at a molybdenum–iron–sulfur cluster. Nat. Chem. 13, 666–670 (2021).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing