Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

C–C bond activation enabled by dyotropic rearrangement of Pd(iv) species

Abstract

The weak carbon–metal bond combined with the kinetic inertness of the carbon–carbon bond renders metal-catalysed C–C bond activation to be highly challenging. Most of the reported C–C bond activation methodologies involve strain-releasing cleavage of small rings to compensate for unfavourable kinetic and thermodynamic penalties associated with C–C bond cleavage. Here we report that the 1,2-positional interchange of vicinal C–C and C–Pd(iv) bonds (dyotropic rearrangement) can be realized in a stereospecific manner under mild conditions, giving access to quaternary carbon–palladium bonds. An enantioselective synthesis of medicinally relevant fluorinated cyclopentanes, featuring this rearrangement as a key step, has been developed. We anticipate that implementing a Pd-based dyotropic rearrangement in reaction design could provide a new tool in the development of Pd-catalysed transformations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Dyotropic rearrangement involving metals.
Fig. 2: Side products and mechanistic implication.
Fig. 3: Structure characterization of key reaction intermediates.

Similar content being viewed by others

Data availability

Crystallographic data for the structures reported in this article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 1979593 (2a), CCDC 1978762 (2d), CCDC 1978761 (6s), CCDC 2024253 (7b). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/. The data supporting the findings of this study are available within the article and its Supplementary Information files.

References

  1. Reetz, M. T. Dyotropic rearrangements, a new class of orbital-symmetry controlled reactions. Type I. Angew. Chem. Int. Ed. 11, 129–130 (1972).

    Article  CAS  Google Scholar 

  2. Reetz, M. T. Dyotropic rearrangements, a new class of orbital-symmetry controlled reactions. Type II. Angew. Chem. Int. Ed. 11, 130–131 (1972).

    Article  CAS  Google Scholar 

  3. Fernández, I., Cossío, F. P. & Sierra, M. A. Dyotropic reactions: mechanisms and synthetic applications. Chem. Rev. 109, 6687–6711 (2009).

    Article  Google Scholar 

  4. Croisant, M. F., Van Hoveln, R. & Schomaker, J. M. Formal dyotropic rearrangements in organometallic transformations. Eur. J. Org. Chem. 5897–5907 (2015).

  5. Kocieński, P. & Barber, C. Synthetic applications of metallate rearrangements. Pure Appl. Chem. 62, 1933–1940 (1990).

    Article  Google Scholar 

  6. Mei, T.-S., Patel, H. H. & Sigman, M. S. Enantioselective construction of remote quaternary stereocentres. Nature 508, 340–344 (2014).

    Article  CAS  Google Scholar 

  7. Sommer, H., Juliá-Hernández, F., Martin, R. & Marek, I. Walking metals for remote functionalization. ACS Cent. Sci. 4, 153–165 (2018).

    Article  CAS  Google Scholar 

  8. Mochida, K., Shimizu, M. & Hiyama, T. Palladium-catalyzed intramolecular coupling of 2-[(2-pyrrolyl)silyl]aryl triflates through 1,2-silicon migration. J. Am. Chem. Soc. 131, 8350–8351 (2009).

    Article  CAS  Google Scholar 

  9. Wu, H. et al. High-valent palladium-promoted formal Wagner–Meerwein rearrangement. Org. Lett. 18, 5804–5807 (2016).

    Article  CAS  Google Scholar 

  10. Li, Y. et al. Palladium-catalyzed bromoalkynylation of C–C double bonds: ring-structure-dependent synthesis of 7-alkynyl norbornanes and cyclobutenyl halides. Angew. Chem. Int. Ed. 50, 6341–6345 (2011).

    Article  CAS  Google Scholar 

  11. Liu, H., Chen, C., Wang, L. & Tong, X. Pd(0)-catalyzed iodoalkynation of norbornene scaffolds: the remarkable solvent effect on reaction pathway. Org. Lett. 13, 5072–5075 (2011).

    Article  CAS  Google Scholar 

  12. Souillart, L. & Cramer, N. Catalytic C−C bond activations via oxidative addition to transition metals. Chem. Rev. 115, 9410–9464 (2015).

    Article  CAS  Google Scholar 

  13. Ye, J. et al. Remote C–H alkylation and C–C bond cleavage enabled by an in situ generated palladacycle. Nat. Chem. 9, 361–368 (2017).

    Article  CAS  Google Scholar 

  14. Talbot, E. P. A., Fernandes, T. de A., Mckenna, J. M. & Toste, F. D. Asymmetric palladium-catalyzed directed intermolecular fluoroarylation of styrenes. J. Am. Chem. Soc. 136, 4101–4104 (2014).

    Article  CAS  Google Scholar 

  15. He, Y., Yang, Z., Thornbury, R. T. & Toste, F. D. Palladium-catalyzed enantioselective 1,1-fluoroarylation of aminoalkenes. J. Am. Chem. Soc. 137, 12207–12210 (2015).

    Article  CAS  Google Scholar 

  16. Canty, A. J. Organopalladium and platinum chemistry in oxidising milieu as models for organic synthesis involving the higher oxidation states of palladium. Dalton Trans. 10409–10417 (2009).

  17. Hickman, A. J. & Sanford, M. S. High-valent organometallic copper and palladium in catalysis. Nature 484, 177–185 (2012).

    Article  CAS  Google Scholar 

  18. Thornbury, R. T. et al. The development and mechanistic investigation of a palladium-catalyzed 1,3-arylfluorination of chromenes. Chem. Sci. 8, 2890–2897 (2017).

    Article  CAS  Google Scholar 

  19. Park, H., Verma, P., Hong, K. & Yu, J.-Q. Controlling Pd(iv) reductive elimination pathways enables Pd(ii)-catalysed enantioselective C(sp3)−H fluorination. Nat. Chem. 10, 755–762 (2018).

    Article  CAS  Google Scholar 

  20. Emer, E., Pfeifer, L., Brown, J. M. & Gouverneur, V. cis-Specific hydrofluorination of alkenylarenes under palladium catalysis through an ionic pathway. Angew. Chem. Int. Ed. 53, 4181–4185 (2014).

    Article  CAS  Google Scholar 

  21. Pérez-Temprano, M. H., Racowski, J. M., Kampf, J. W. & Sanford, M. S. Competition between sp3‑C−N vs sp3‑C−F reductive elimination from Pdiv complexes. J. Am. Chem. Soc. 136, 4097–4100 (2014).

    Article  Google Scholar 

  22. Kaspi, A. W., Yahav-Levi, A., Goldberg, I. & Vigalok, A. Xenon difluoride induced aryl iodide reductive elimination: a simple access to difluoropalladium(ii) complexes. Inorg. Chem. 47, 5–7 (2008).

    Article  CAS  Google Scholar 

  23. Ball, N. D. & Sanford, M. S. Synthesis and reactivity of a mono-σ-aryl palladium(iv) fluoride complex. J. Am. Chem. Soc. 131, 3796–3797 (2009).

    Article  CAS  Google Scholar 

  24. Furuya, T. et al. Mechanism of C–F reductive elimination from palladium(iv) fluorides. J. Am. Chem. Soc. 132, 3793–3807 (2010).

    Article  CAS  Google Scholar 

  25. Zhu, Y. et al. Modern approaches for asymmetric construction of carbon–fluorine quaternary stereogenic centers: synthetic challenges and pharmaceutical needs. Chem. Rev. 118, 3887–3964 (2018).

    Article  CAS  Google Scholar 

  26. Bäckvall, J.-E. & Nordberg, R. E. Phenyl participation in the cleavage of β-phenethyl–palladium bonds by cupric chloride. J. Am. Chem. Soc. 102, 393–395 (1980).

    Article  Google Scholar 

  27. Banik, S. M., Wedley, J. W. & Jacobsen, E. N. Catalytic, asymmetric difluorination of alkenes to generate difluoromethylated stereocenters. Science 353, 51–54 (2016).

    Article  CAS  Google Scholar 

  28. Furuya, T., Kaiser, H. M. & Ritter, T. Palladium-mediated fluorination of arylboronic acids. Angew. Chem. Int. Ed. 47, 5993–5996 (2008).

    Article  CAS  Google Scholar 

  29. Furuya, T. & Ritter, T. Carbon–fluorine reductive elimination. J. Am. Chem. Soc. 130, 10060–10061 (2008).

    Article  CAS  Google Scholar 

  30. Pilon, M. C. & Grushin, V. V. Synthesis and characterization of organopalladium complexes containing a fluoro ligand. Organometallics 17, 1774–1781 (1998).

    Article  CAS  Google Scholar 

  31. Ball, N. D., Kampf, J. W. & Sanford, M. S. Synthesis and reactivity of palladium(ii) fluoride complexes containing nitrogen-donor ligands. Dalton Trans. 39, 632–640 (2010).

    Article  CAS  Google Scholar 

  32. Engle, K. M., Mei, T.-S., Wang, X. & Yu, J.-Q. Bystanding F+ oxidants enable selective reductive elimination from high-valent metal centers in catalysis. Angew. Chem. Int. Ed. 50, 1478–1491 (2011).

    Article  CAS  Google Scholar 

  33. He, G., Zhao, Y., Zhang, S., Lu, C. & Chen, G. Highly efficient syntheses of azetidines, pyrrolidines, and indolines via palladium catalyzed intramolecular amination of C(sp3)−H and C(sp2)−H bonds at γ and δ positions. J. Am. Chem. Soc. 134, 3–6 (2012).

    Article  CAS  Google Scholar 

  34. Liu, G. & Stahl, S. S. Highly regioselective Pd-catalyzed intermolecular aminoacetoxylation of alkenes and evidence for cis-aminopalladation and SN2 C–O bond formation. J. Am. Chem. Soc. 128, 7179–7181 (2006).

    Article  CAS  Google Scholar 

  35. Powers, D. C. et al. Connecting binuclear Pd(iii) and mononuclear Pd(iv) chemistry by Pd−Pd bond cleavage. J. Am. Chem. Soc. 134, 12002–12009 (2012).

    Article  CAS  Google Scholar 

  36. Ruhs, N. P., Khusnutdinova, J. R., Rath, N. P. & Mirica, L. M. Mononuclear organometallic Pd(ii), Pd(iii), and Pd(iv) complexes stabilized by a pyridinophane ligand with a C‑donor group. Organometallics 38, 3834–3843 (2019).

    Article  CAS  Google Scholar 

  37. Mei, T.-S., Wang, X. & Yu, J.-Q. Pd(ii)-catalyzed amination of C–H bonds using single-electron or two-electron oxidants. J. Am. Chem. Soc. 131, 10806–10807 (2009).

    Article  CAS  Google Scholar 

  38. Khusnutdinova, J. R., Rath, N. P. & Mirica, L. M. Stable mononuclear organometallic Pd(iii) complexes and their C–C bond formation reactivity. J. Am. Chem. Soc. 132, 7303–7305 (2010).

    Article  CAS  Google Scholar 

  39. He, Y.-P., Cao, J., Wu, H., Wang, Q. & Zhu, J. Catalytic enantioselective aminopalladation-Heck cascade. Angew. Chem. Int. Ed. 60, 7093–7097 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

We thank F.-T. Farzaneh and R. Scopelliti for the X-ray structural analysis of compounds 2a, 2d, 6s and 7b. Financial support from EPFL (Switzerland) and the Swiss National Science Foundation (SNSF 200021-178816/1) is gratefully acknowledged. J.C. thanks the China Scholarship Council for a Visiting Scholar Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

J.C., H.W., Q.W. and J.Z. conceived the work, designed the experiments and analysed the data. J.C. and H.W. optimized the reaction conditions and performed the experiments. J.C., H.W., Q.W. and J.Z. co-wrote the paper.

Corresponding author

Correspondence to Jieping Zhu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Chemistry thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

General information, Supplementary Tables S1–S3, Figs. S1 and S2, synthesis and characterization data, procedural details, X-ray crystallographic data, references, NMR spectra, supercritical fluid chromatography chromatograms.

Supplementary Data 1

Crystallographic data for compound 2a. CCDC reference 1979593.

Supplementary Data 2

Crystallographic data for compound 2d. CCDC reference 1978762.

Supplementary Data 3

Crystallographic data for compound 6s. CCDC reference 1978761.

Supplementary Data 4

Crystallographic data for compound 7b. CCDC reference 2024253.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, J., Wu, H., Wang, Q. et al. C–C bond activation enabled by dyotropic rearrangement of Pd(iv) species. Nat. Chem. 13, 671–676 (2021). https://doi.org/10.1038/s41557-021-00698-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-021-00698-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing