Abstract
Magnetic bistable materials that feature magnetic hysteresis are comparable to elementary binary units and promising for application in switches and memory devices. In this work, we report a material that consists of parallel cyanide-bridged [Feii–Wv] coordination chains linked together through rigid bis(imidazolyl)–benzene ligands and displays multiple magnetic states. The paramagnetic high-spin and diamagnetic low-spin states of the spin-crossover Feii ions can be interconverted by reversible light-induced excited spin state trapping (LIESST) by alternating between light irradiation of 808 and 473 nm. At 1.8 K, under 808-nm-light irradiation, magnetic interactions between the photogenerated paramagnetic high-spin Feii centres and the Wv centres lead to long fragments that exhibit single-chain magnet behaviour, with a wide magnetic hysteresis and a large coercive field of 19 kOe; under a 473 nm light, isolated Feii–Wv fragments behave as single-molecule magnets instead. At 3.3 K, the high-spin form still displays magnetic hysteresis, albeit narrower, whereas the low-spin one does not.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
All data supporting the finding of this study are available within this article and its Supplementary Information. The crystallographic data have been deposited at the Cambridge Crystallographic Data Centre (CCDC), under deposition numbers CCDC 1967433 (for 1 at 200 K) and CCDC 1967426 (for 1 at 28 K) and can be obtained free of charge via http://www.ccdc.cam.ac.uk/data_request/cif. Source data are provided with this paper.
References
Sessoli, R., Gatteschi, D., Caneschi, A. & Novak, M. Magnetic bistability in a meta–ion cluster. Nature 365, 141–143 (1993).
Fujita, W. & Awaga, K. Room-temperature magnetic bistability in organic radical crystals. Science 286, 261–262 (1999).
Itkis, M. E., Chi, X., Cordes, A. W. & Haddon, R. C. Magneto-opto-electronic bistability in a phenalenyl-based neutral radical. Science 296, 1443–1445 (2002).
Venkataramani, S. et al. Magnetic bistability of molecules in homogeneous solution at room temperature. Science 331, 445–448 (2011).
Hicks, R. G. A new spin on bistability. Nat. Chem. 3, 189–191 (2011).
Kahn, O. & Martinez, C. J. Spin-transition polymers: from molecular materials toward memory devices. Science 279, 44–48 (1998).
Bogani, L. & Wernsdorfer, W. Molecular spintronics using single-molecule magnets. Nat. Mater. 7, 179–186 (2008).
Mannini, M. et al. Magnetic memory of a single-molecule quantum magnet wired to a gold surface. Nat. Mater. 8, 194–197 (2009).
Ohkoshi, S.-i, Imoto, K., Tsunobuchi, Y., Takano, S. & Tokoro, H. Light-induced spin-crossover magnet. Nat. Chem. 3, 564–569 (2011).
Vincent, R., Klyatskaya, S., Ruben, M., Wernsdorfer, W. & Balestro, F. Electronic read-out of a single nuclear spin using a molecular spin transistor. Nature 488, 357–360 (2012).
Molnár, G., Rat, S., Salmon, L., Nicolazzi, W. & Bousseksou, A. Spin crossover nanomaterials: from fundamental concepts to devices. Adv. Mater. 30, 17003862 (2018).
Coronado, E. Molecular magnetism: from chemical design to spin control in molecules, materials and devices. Nat. Rev. Mater. 5, 87–104 (2020).
Woodruff, D. N., Winpenny, R. E. P. & Layfield, R. A. Lanthanide single-molecule magnets. Chem. Rev. 113, 5110–5148 (2013).
Liddle, S. T. & van Slageren, J. Improving f-element single molecule magnets. Chem. Soc. Rev. 44, 6655–6669 (2015).
Liu, J.-L., Chen, Y.-C. & Tong, M.-L. Symmetry strategies for high performance lanthanide-based single-molecule magnets. Chem. Soc. Rev. 47, 2431–2453 (2018).
Guo, F.-S., Bar, A. K. & Layfield, R. A. Main group chemistry at the interface with molecular magnetism. Chem. Rev. 119, 8479–8505 (2019).
Miyasaka, H., Julve, M., Yamashita, M. & Clérac, R. Slow dynamics of the magnetization in one-dimensional coordination polymers: single-chain magnets. Inorg. Chem. 48, 3420–3437 (2009).
Sun, H.-L., Wang, Z.-M. & Gao, S. Strategies towards single-chain magnets. Coord. Chem. Rev. 254, 1081–1100 (2010).
Coulon, C., Pianet, V., Urdampilleta, M. & Clérac, R. in Molecular Nanomagnets and Related Phenomena (ed. Gao, S.) 143−184 (Springer, 2015).
Pedersen, K. S., Vindigni, A., Sessoli, R., Coulon, C., Clérac, R. in Molecular Magnetic Materials Concepts and Applications (eds Sieklucka, B. & Pinkowicz, D.) 131−159 (Wiley-VCH, 2017).
Real, J. A. et al. Spin-crossover in a catenane supramolecular system. Science 268, 265–267 (1995).
Halder, G. J., Kepert, C. J., Moubaraki, B., Murray, K. S. & Casion, J. D. Guest-dependent spin crossover in a nanoporous molecular framework material. Science 298, 1762–1765 (2002).
Gütlich, P. & Goodwin, H. A. Spin Crossover in Transition Metal Compounds I–III (Springer, 2004).
Halcrow, M. A. Spin-Crossover Materials: Properties and Applications (Springer, 2013).
Hogue, R. W., Singh, S. & Brooker, S. Spin crossover in discrete polynuclear iron(ii) complexes. Chem. Soc. Rev. 47, 7303–7338 (2018).
Pierpont, C. G. Studies on charge distribution and valence tautomerism in transition metal complexes of catecholate and semiquinonate ligands. Coord. Chem. Rev. 216, 99–125 (2001).
Ohkoshi, S.-i., Tokoro, H. & Hashimoto, K. Temperature- and photo-induced phase transition in rubidium manganese hexacyanoferrate. Coord. Chem. Rev. 249, 1830–1840 (2005).
Aguila, D., Prado, Y., Koumousi, E. S., Mathonière, C. & Clérac, R. Switchable Fe/Co Prussian blue networks and molecular analogues. Chem. Soc. Rev. 45, 203–224 (2016).
Sato, O. Dynamic molecular crystals with switchable physical properties. Nat. Chem. 8, 644–656 (2016).
Mathonière, C. Metal-to-metal electron transfer: a powerful tool for the design of switchable coordination compounds. Eur. J. Inorg. Chem. 2018, 248–258 (2018).
Decurtins, S., Gütlich, P., Kohler, C. P., Spiering, H. & Hauser, A. Light-induced excited spin state trapping in a transition-metal complex: the hexa-1-propyltetrazole-iron (II) tetrafluoroborate spin-crossover system. Chem. Phys. Lett. 105, 1–4 (1984).
Létard, J. F. et al. Structural, magnetic, and photomagnetic studies of a mononuclear iron(II) derivative exhibiting an exceptionally abrupt spin transition. Light-induced thermal hysteresis phenomenon. Inorg. Chem. 37, 4432–4441 (1998).
Ogawa, Y. et al. Dynamical aspects of the photoinduced phase transition in spin-crossover complexes. Phys. Rev. Lett. 84, 3181–3184 (2000).
Hayami, S. et al. First observation of light-induced excited spin state trapping for an iron(III) complex. J. Am. Chem. Soc. 122, 7126–7127 (2000).
Feng, X. et al. Tristability in a light-actuated single-molecule magnet. J. Am. Chem. Soc. 135, 15880–15884 (2013).
Mathonière, C., Lin, H.-J., Siretanu, D., Clérac, R. & Smith, J. M. Photoinduced single-molecule magnet properties in a four-coordinate iron(II) spin crossover complex. J. Am. Chem. Soc. 135, 19083–19086 (2013).
Hoshino, N. et al. Three-way switching in a cyanide-bridged [CoFe] chain. Nat. Chem. 4, 921–926 (2012).
Jiang, W. et al. Switching single chain magnet behavior via photoinduced bidirectional metal-to-metal charge transfer. Chem. Sci. 9, 617–622 (2018).
Liu, T. et al. A light-induced spin crossover actuated single-chain magnet. Nat. Commun. 4, 2826 (2013).
Létard, J. F. et al. Light induced excited pair spin state in an iron(II) binuclear spin-crossover compound. J. Am. Chem. Soc. 121, 10630–10631 (1999).
Moussa, N. O. et al. Wavelength selective light-induced magnetic effects in the binuclear spin crossover compound {[Fe(bt)(NCS)2]2(bpym)}. Phys. Rev. B 75, 054101 (2007).
Mondal, A. et al. Photomagnetic effect in a cyanide-bridged mixed-valence {Feii2Feiii2} molecular square. Chem. Commun. 48, 5653–5655 (2012).
Matsumoto, T. et al. Programmable spin-state switching in a mixed-valence spin-crossover iron grid. Nat. Commun. 5, 3865 (2014).
Sun, H.-Y., Meng, Y.-S. & Liu, T. Photo-switched magnetic coupling in spin-crossover complexes. Chem. Commun. 55, 8359–8373 (2019).
Chorazy, S. et al. Tuning of charge transfer assisted phase transition and slow magnetic relaxation functionalities in {Fe9–xCox[W(CN)8]6} (x = 0–9) molecular solid solution. J. Am. Chem. Soc. 138, 1635–1646 (2016).
Wang, X. Y., Avendano, C. & Dunbar, K. R. Molecular magnetic materials based on 4d and 5d transition metals. Chem. Soc. Rev. 40, 3213–3238 (2011).
Ohkoshi, S.-I. & Tokoro, H. Photomagnetism in cyano-bridged bimetal assemblies. Acc. Chem. Res. 45, 1749–1758 (2012).
Ozaki, N. et al. Photoinduced magnetization with a high Curie temperature and a large coercive field in a Co–W bimetallic assembly. Adv. Funct. Mater. 22, 2089–2093 (2012).
Chorazy, S. et al. Feii spin-crossover phenomenon in the pentadecanuclear {Fe9[Re(CN)8]6} spherical cluster. Angew. Chem. Int. Ed. 54, 5093–5097 (2015).
Kawabata, S. et al. In situ ligand transformation for two-step spin crossover in Feii[Miv(CN)8]4– (M = Mo, Nb) cyanido-bridged frameworks. Inorg. Chem. 58, 6052–6063 (2019).
Chen, Y.-C. et al. Light- and temperature-assisted spin state annealing: accessing the hidden multistability. Chem. Sci. 11, 3281–3289 (2020).
Loveluck, J. M., Lovesey, S. W. & Aubry, S. Spin correlations for a classical linear magnet with exchange and single-site anisotropy energies. J. Phys. C 8, 3841–3856 (1975).
Coulon, C., Clérac, R., Lecren, L., Wernsdorfer, W. & Miyasaka, H. Glauber dynamics in a single-chain magnet: from theory to real systems. Phys. Rev. B 69, 132408 (2004).
Bok, L. D. C., Leipoldt, J. G. & Basson, S. S. Preparation of Cs3Mo(CN)8·2H2O and Cs3W(CN)8·2H2O. Z. Anorg. Allg. Chem. 415, 81–83 (1975).
Boudreaux, E. A. & Mulay, L. N. Theory and Application of Molecular Paramagnetism (John Wiley & Sons, 1976).
Sheldrick, G. M. SHELXT: integrating space group determination and structure solution. Acta Crystallogr. A 70, C1437 (2014).
Acknowledgements
This work was supported by the National Natural Science Foundation of China (22025101, 91961114, 21871039, 22071017 and 21801037), the Liaoning Provincial Natural Science Foundation of China (2019-MS-318) and the Fundamental Research Funds for the Central Universities, China.
Author information
Authors and Affiliations
Contributions
T.L. conceived the research and managed the project. L.Z. synthesized the complexes. L.Z. and Y.-S.M. performed the magnetic and spectroscopic measurements. Q.L., O.S. and H.O. carried out the 57Fe Mössbauer measurement and spectra analysis. Y.-S.M. and Q.S. carried out the heat capacity measurement and analysis. Y.-S.M. analysed the magnetic data. Y.-S.M., L.Z. and T.L. conducted the data interpretation and co-wrote the manuscript. L.Z. and Y.-S.M. contributed to this work equally. All authors discussed the results and commented on the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information Nature Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Figs. 1–15, discussions and Tables 1–4.
Supplementary Data 1
CIF for complex 1 at 28 K; CCDC reference: 1967426.
Supplementary Data 2
CIF for complex 1 at 200 K; CCDC reference: 1967433.
Supplementary Data 3
Source data for Supplementary Fig. 11b,c. Extracted relaxation times at different temperatures and fitting results for complex 1 before irradiation; unprocessed in-phase signals at different temperatures and fitting results for complex 1 before irradiation.
Source data
Source Data Fig. 4
Source data for Fig. 4a–d. Unprocessed 57Fe Mössbauer spectra data and fitting data for complex 1 at 140 K (a), at 25 K (b), after 808-nm light irradiation at 25 K (c), and after 473-nm light irradiation at 25 K (d).
Source Data Fig. 5
Source data for Fig. 5b,c. Extracted relaxation times at different temperatures and fitting results for complex 1 after 808-nm light irradiation; unprocessed in-phase signals at different temperatures and fitting results for complex 1 after 808-nm light irradiation.
Rights and permissions
About this article
Cite this article
Zhao, L., Meng, YS., Liu, Q. et al. Switching the magnetic hysteresis of an [Feii–NC–Wv]-based coordination polymer by photoinduced reversible spin crossover. Nat. Chem. 13, 698–704 (2021). https://doi.org/10.1038/s41557-021-00695-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41557-021-00695-1
This article is cited by
-
Integrating spin-dependent emission and dielectric switching in FeII catenated metal-organic frameworks
Nature Communications (2024)
-
Polymeric membranes with highly homogenized nanopores for ultrafast water purification
Nature Sustainability (2024)
-
A dual-switching spin-crossover framework with redox regulation and guest response
Science China Chemistry (2023)
-
Synthesis of contra-helical trefoil knots with mechanically tuneable spin-crossover properties
Nature Synthesis (2022)
-
Achieving large thermal hysteresis in an anthracene-based manganese(II) complex via photo-induced electron transfer
Nature Communications (2022)