Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Switching the magnetic hysteresis of an [Feii–NC–Wv]-based coordination polymer by photoinduced reversible spin crossover

Abstract

Magnetic bistable materials that feature magnetic hysteresis are comparable to elementary binary units and promising for application in switches and memory devices. In this work, we report a material that consists of parallel cyanide-bridged [Feii–Wv] coordination chains linked together through rigid bis(imidazolyl)–benzene ligands and displays multiple magnetic states. The paramagnetic high-spin and diamagnetic low-spin states of the spin-crossover Feii ions can be interconverted by reversible light-induced excited spin state trapping (LIESST) by alternating between light irradiation of 808 and 473 nm. At 1.8 K, under 808-nm-light irradiation, magnetic interactions between the photogenerated paramagnetic high-spin Feii centres and the Wv centres lead to long fragments that exhibit single-chain magnet behaviour, with a wide magnetic hysteresis and a large coercive field of 19 kOe; under a 473 nm light, isolated Feii–Wv fragments behave as single-molecule magnets instead. At 3.3 K, the high-spin form still displays magnetic hysteresis, albeit narrower, whereas the low-spin one does not.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Crystal structure of complex 1.
Fig. 2: Temperature-dependent susceptibility of complex 1 under a d.c. field of 1 kOe.
Fig. 3: Light-induced magnetic property of complex 1.
Fig. 4: Mössbauer spectra of complex 1.
Fig. 5: Dynamic magnetic susceptibilities of complex 1 after 808-nm-light irradiation.
Fig. 6: Magnetic hysteresis loops after irradiation with different light.

Similar content being viewed by others

Data availability

All data supporting the finding of this study are available within this article and its Supplementary Information. The crystallographic data have been deposited at the Cambridge Crystallographic Data Centre (CCDC), under deposition numbers CCDC 1967433 (for 1 at 200 K) and CCDC 1967426 (for 1 at 28 K) and can be obtained free of charge via http://www.ccdc.cam.ac.uk/data_request/cif. Source data are provided with this paper.

References

  1. Sessoli, R., Gatteschi, D., Caneschi, A. & Novak, M. Magnetic bistability in a meta–ion cluster. Nature 365, 141–143 (1993).

    Article  CAS  Google Scholar 

  2. Fujita, W. & Awaga, K. Room-temperature magnetic bistability in organic radical crystals. Science 286, 261–262 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Itkis, M. E., Chi, X., Cordes, A. W. & Haddon, R. C. Magneto-opto-electronic bistability in a phenalenyl-based neutral radical. Science 296, 1443–1445 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Venkataramani, S. et al. Magnetic bistability of molecules in homogeneous solution at room temperature. Science 331, 445–448 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Hicks, R. G. A new spin on bistability. Nat. Chem. 3, 189–191 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Kahn, O. & Martinez, C. J. Spin-transition polymers: from molecular materials toward memory devices. Science 279, 44–48 (1998).

    Article  CAS  Google Scholar 

  7. Bogani, L. & Wernsdorfer, W. Molecular spintronics using single-molecule magnets. Nat. Mater. 7, 179–186 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Mannini, M. et al. Magnetic memory of a single-molecule quantum magnet wired to a gold surface. Nat. Mater. 8, 194–197 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Ohkoshi, S.-i, Imoto, K., Tsunobuchi, Y., Takano, S. & Tokoro, H. Light-induced spin-crossover magnet. Nat. Chem. 3, 564–569 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Vincent, R., Klyatskaya, S., Ruben, M., Wernsdorfer, W. & Balestro, F. Electronic read-out of a single nuclear spin using a molecular spin transistor. Nature 488, 357–360 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Molnár, G., Rat, S., Salmon, L., Nicolazzi, W. & Bousseksou, A. Spin crossover nanomaterials: from fundamental concepts to devices. Adv. Mater. 30, 17003862 (2018).

    Article  Google Scholar 

  12. Coronado, E. Molecular magnetism: from chemical design to spin control in molecules, materials and devices. Nat. Rev. Mater. 5, 87–104 (2020).

    Article  Google Scholar 

  13. Woodruff, D. N., Winpenny, R. E. P. & Layfield, R. A. Lanthanide single-molecule magnets. Chem. Rev. 113, 5110–5148 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Liddle, S. T. & van Slageren, J. Improving f-element single molecule magnets. Chem. Soc. Rev. 44, 6655–6669 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Liu, J.-L., Chen, Y.-C. & Tong, M.-L. Symmetry strategies for high performance lanthanide-based single-molecule magnets. Chem. Soc. Rev. 47, 2431–2453 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Guo, F.-S., Bar, A. K. & Layfield, R. A. Main group chemistry at the interface with molecular magnetism. Chem. Rev. 119, 8479–8505 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. Miyasaka, H., Julve, M., Yamashita, M. & Clérac, R. Slow dynamics of the magnetization in one-dimensional coordination polymers: single-chain magnets. Inorg. Chem. 48, 3420–3437 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Sun, H.-L., Wang, Z.-M. & Gao, S. Strategies towards single-chain magnets. Coord. Chem. Rev. 254, 1081–1100 (2010).

    Article  CAS  Google Scholar 

  19. Coulon, C., Pianet, V., Urdampilleta, M. & Clérac, R. in Molecular Nanomagnets and Related Phenomena (ed. Gao, S.) 143−184 (Springer, 2015).

  20. Pedersen, K. S., Vindigni, A., Sessoli, R., Coulon, C., Clérac, R. in Molecular Magnetic Materials Concepts and Applications (eds Sieklucka, B. & Pinkowicz, D.) 131−159 (Wiley-VCH, 2017).

  21. Real, J. A. et al. Spin-crossover in a catenane supramolecular system. Science 268, 265–267 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Halder, G. J., Kepert, C. J., Moubaraki, B., Murray, K. S. & Casion, J. D. Guest-dependent spin crossover in a nanoporous molecular framework material. Science 298, 1762–1765 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Gütlich, P. & Goodwin, H. A. Spin Crossover in Transition Metal Compounds I–III (Springer, 2004).

  24. Halcrow, M. A. Spin-Crossover Materials: Properties and Applications (Springer, 2013).

  25. Hogue, R. W., Singh, S. & Brooker, S. Spin crossover in discrete polynuclear iron(ii) complexes. Chem. Soc. Rev. 47, 7303–7338 (2018).

    Article  CAS  PubMed  Google Scholar 

  26. Pierpont, C. G. Studies on charge distribution and valence tautomerism in transition metal complexes of catecholate and semiquinonate ligands. Coord. Chem. Rev. 216, 99–125 (2001).

    Article  Google Scholar 

  27. Ohkoshi, S.-i., Tokoro, H. & Hashimoto, K. Temperature- and photo-induced phase transition in rubidium manganese hexacyanoferrate. Coord. Chem. Rev. 249, 1830–1840 (2005).

    Article  CAS  Google Scholar 

  28. Aguila, D., Prado, Y., Koumousi, E. S., Mathonière, C. & Clérac, R. Switchable Fe/Co Prussian blue networks and molecular analogues. Chem. Soc. Rev. 45, 203–224 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Sato, O. Dynamic molecular crystals with switchable physical properties. Nat. Chem. 8, 644–656 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Mathonière, C. Metal-to-metal electron transfer: a powerful tool for the design of switchable coordination compounds. Eur. J. Inorg. Chem. 2018, 248–258 (2018).

    Article  Google Scholar 

  31. Decurtins, S., Gütlich, P., Kohler, C. P., Spiering, H. & Hauser, A. Light-induced excited spin state trapping in a transition-metal complex: the hexa-1-propyltetrazole-iron (II) tetrafluoroborate spin-crossover system. Chem. Phys. Lett. 105, 1–4 (1984).

    Article  CAS  Google Scholar 

  32. Létard, J. F. et al. Structural, magnetic, and photomagnetic studies of a mononuclear iron(II) derivative exhibiting an exceptionally abrupt spin transition. Light-induced thermal hysteresis phenomenon. Inorg. Chem. 37, 4432–4441 (1998).

    Article  PubMed  Google Scholar 

  33. Ogawa, Y. et al. Dynamical aspects of the photoinduced phase transition in spin-crossover complexes. Phys. Rev. Lett. 84, 3181–3184 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Hayami, S. et al. First observation of light-induced excited spin state trapping for an iron(III) complex. J. Am. Chem. Soc. 122, 7126–7127 (2000).

    Article  CAS  Google Scholar 

  35. Feng, X. et al. Tristability in a light-actuated single-molecule magnet. J. Am. Chem. Soc. 135, 15880–15884 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Mathonière, C., Lin, H.-J., Siretanu, D., Clérac, R. & Smith, J. M. Photoinduced single-molecule magnet properties in a four-coordinate iron(II) spin crossover complex. J. Am. Chem. Soc. 135, 19083–19086 (2013).

    Article  PubMed  Google Scholar 

  37. Hoshino, N. et al. Three-way switching in a cyanide-bridged [CoFe] chain. Nat. Chem. 4, 921–926 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Jiang, W. et al. Switching single chain magnet behavior via photoinduced bidirectional metal-to-metal charge transfer. Chem. Sci. 9, 617–622 (2018).

    Article  CAS  PubMed  Google Scholar 

  39. Liu, T. et al. A light-induced spin crossover actuated single-chain magnet. Nat. Commun. 4, 2826 (2013).

    Article  Google Scholar 

  40. Létard, J. F. et al. Light induced excited pair spin state in an iron(II) binuclear spin-crossover compound. J. Am. Chem. Soc. 121, 10630–10631 (1999).

    Article  Google Scholar 

  41. Moussa, N. O. et al. Wavelength selective light-induced magnetic effects in the binuclear spin crossover compound {[Fe(bt)(NCS)2]2(bpym)}. Phys. Rev. B 75, 054101 (2007).

    Article  Google Scholar 

  42. Mondal, A. et al. Photomagnetic effect in a cyanide-bridged mixed-valence {Feii2Feiii2} molecular square. Chem. Commun. 48, 5653–5655 (2012).

    Article  CAS  Google Scholar 

  43. Matsumoto, T. et al. Programmable spin-state switching in a mixed-valence spin-crossover iron grid. Nat. Commun. 5, 3865 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Sun, H.-Y., Meng, Y.-S. & Liu, T. Photo-switched magnetic coupling in spin-crossover complexes. Chem. Commun. 55, 8359–8373 (2019).

    Article  CAS  Google Scholar 

  45. Chorazy, S. et al. Tuning of charge transfer assisted phase transition and slow magnetic relaxation functionalities in {Fe9–xCox[W(CN)8]6} (x = 0–9) molecular solid solution. J. Am. Chem. Soc. 138, 1635–1646 (2016).

    Article  CAS  PubMed  Google Scholar 

  46. Wang, X. Y., Avendano, C. & Dunbar, K. R. Molecular magnetic materials based on 4d and 5d transition metals. Chem. Soc. Rev. 40, 3213–3238 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Ohkoshi, S.-I. & Tokoro, H. Photomagnetism in cyano-bridged bimetal assemblies. Acc. Chem. Res. 45, 1749–1758 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Ozaki, N. et al. Photoinduced magnetization with a high Curie temperature and a large coercive field in a Co–W bimetallic assembly. Adv. Funct. Mater. 22, 2089–2093 (2012).

    Article  CAS  Google Scholar 

  49. Chorazy, S. et al. Feii spin-crossover phenomenon in the pentadecanuclear {Fe9[Re(CN)8]6} spherical cluster. Angew. Chem. Int. Ed. 54, 5093–5097 (2015).

    Article  CAS  Google Scholar 

  50. Kawabata, S. et al. In situ ligand transformation for two-step spin crossover in Feii[Miv(CN)8]4– (M = Mo, Nb) cyanido-bridged frameworks. Inorg. Chem. 58, 6052–6063 (2019).

    Article  CAS  PubMed  Google Scholar 

  51. Chen, Y.-C. et al. Light- and temperature-assisted spin state annealing: accessing the hidden multistability. Chem. Sci. 11, 3281–3289 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Loveluck, J. M., Lovesey, S. W. & Aubry, S. Spin correlations for a classical linear magnet with exchange and single-site anisotropy energies. J. Phys. C 8, 3841–3856 (1975).

    Article  Google Scholar 

  53. Coulon, C., Clérac, R., Lecren, L., Wernsdorfer, W. & Miyasaka, H. Glauber dynamics in a single-chain magnet: from theory to real systems. Phys. Rev. B 69, 132408 (2004).

    Article  Google Scholar 

  54. Bok, L. D. C., Leipoldt, J. G. & Basson, S. S. Preparation of Cs3Mo(CN)8·2H2O and Cs3W(CN)8·2H2O. Z. Anorg. Allg. Chem. 415, 81–83 (1975).

    Article  CAS  Google Scholar 

  55. Boudreaux, E. A. & Mulay, L. N. Theory and Application of Molecular Paramagnetism (John Wiley & Sons, 1976).

  56. Sheldrick, G. M. SHELXT: integrating space group determination and structure solution. Acta Crystallogr. A 70, C1437 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22025101, 91961114, 21871039, 22071017 and 21801037), the Liaoning Provincial Natural Science Foundation of China (2019-MS-318) and the Fundamental Research Funds for the Central Universities, China.

Author information

Authors and Affiliations

Authors

Contributions

T.L. conceived the research and managed the project. L.Z. synthesized the complexes. L.Z. and Y.-S.M. performed the magnetic and spectroscopic measurements. Q.L., O.S. and H.O. carried out the 57Fe Mössbauer measurement and spectra analysis. Y.-S.M. and Q.S. carried out the heat capacity measurement and analysis. Y.-S.M. analysed the magnetic data. Y.-S.M., L.Z. and T.L. conducted the data interpretation and co-wrote the manuscript. L.Z. and Y.-S.M. contributed to this work equally. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Yin-Shan Meng or Tao Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–15, discussions and Tables 1–4.

Supplementary Data 1

CIF for complex 1 at 28 K; CCDC reference: 1967426.

Supplementary Data 2

CIF for complex 1 at 200 K; CCDC reference: 1967433.

Supplementary Data 3

Source data for Supplementary Fig. 11b,c. Extracted relaxation times at different temperatures and fitting results for complex 1 before irradiation; unprocessed in-phase signals at different temperatures and fitting results for complex 1 before irradiation.

Source data

Source Data Fig. 4

Source data for Fig. 4a–d. Unprocessed 57Fe Mössbauer spectra data and fitting data for complex 1 at 140 K (a), at 25 K (b), after 808-nm light irradiation at 25 K (c), and after 473-nm light irradiation at 25 K (d).

Source Data Fig. 5

Source data for Fig. 5b,c. Extracted relaxation times at different temperatures and fitting results for complex 1 after 808-nm light irradiation; unprocessed in-phase signals at different temperatures and fitting results for complex 1 after 808-nm light irradiation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, L., Meng, YS., Liu, Q. et al. Switching the magnetic hysteresis of an [Feii–NC–Wv]-based coordination polymer by photoinduced reversible spin crossover. Nat. Chem. 13, 698–704 (2021). https://doi.org/10.1038/s41557-021-00695-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-021-00695-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing