Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

RNA origami design tools enable cotranscriptional folding of kilobase-sized nanoscaffolds

Abstract

RNA origami is a framework for the modular design of nanoscaffolds that can be folded from a single strand of RNA and used to organize molecular components with nanoscale precision. The design of genetically expressible RNA origami, which must fold cotranscriptionally, requires modelling and design tools that simultaneously consider thermodynamics, the folding pathway, sequence constraints and pseudoknot optimization. Here, we describe RNA Origami Automated Design software (ROAD), which builds origami models from a library of structural modules, identifies potential folding barriers and designs optimized sequences. Using ROAD, we extend the scale and functional diversity of RNA scaffolds, creating 32 designs of up to 2,360 nucleotides, five that scaffold two proteins, and seven that scaffold two small molecules at precise distances. Micrographic and chromatographic comparisons of optimized and non-optimized structures validate that our principles for strand routing and sequence design substantially improve yield. By providing efficient design of RNA origami, ROAD may simplify the construction of custom RNA scaffolds for nanomedicine and synthetic biology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Modular design of RNA origami.
Fig. 2: Design of RNA origami curvature and tile–tile interfaces.
Fig. 3: Building taller and wider RNA origami scaffolds.
Fig. 4: TEM analysis of RNA origami structures with optimal and suboptimal designs.
Fig. 5: Scaffolding fluorescent proteins and small molecules on RNA origami.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are further documented in the associated Supplementary Information. All raw data and analysis files used in the study are available upon request from the authors.

Code availability

The code used to generate RNA origami designs in this study is included in the associated Supplementary Information. Future updates to the code will be made available on GitHub (https://github.com/esa-lab/ROAD) and on a dedicated web server with accompanying tutorials (https://bion.au.dk/software/rnao-design/). The code is licensed under the MIT licence.

References

  1. Grabow, W. W. & Jaeger, L. RNA self-assembly and RNA nanotechnology. Acc. Chem. Res. 47, 1871–1880 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Jasinski, D., Haque, F., Binzel, D. W. & Guo, P. Advancement of the emerging field of RNA nanotechnology. ACS Nano 11, 1142–1164 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Weizmann, Y. & Andersen, E. S. RNA nanotechnology—the knots and folds of RNA nanoparticle engineering. MRS Bull. 42, 930–935 (2017).

    Article  CAS  Google Scholar 

  4. Ban, N., Nissen, P., Hansen, J., Moore, P. B. & Steitz, T. A. The complete atomic structure of the large ribosomal subunit at 2.4-Å resolution. Science 289, 905–920 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Wimberly, B. T. et al. Structure of the 30S ribosomal subunit. Nature 407, 327–339 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Geary, C., Rothemund, P. W. K. & Andersen, E. S. A single-stranded architecture for cotranscriptional folding of RNA nanostructures. Science 345, 799–804 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Geary, C., Chworos, A., Verzemnieks, E., Voss, N. R. & Jaeger, L. Composing RNA nanostructures from a syntax of RNA structural modules. Nano Lett. 17, 7095–7101 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Li, M. et al. In vivo production of RNA nanostructures via programmed folding of single-stranded RNAs. Nat. Commun. 9, 2196 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Han, D. et al. Single-stranded DNA and RNA origami. Science 358, eaao2648 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Shibata, T. et al. Protein-driven RNA nanostructured devices that function in vitro and control mammalian cell fate. Nat. Commun. 8, 540 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Krissanaprasit, A. et al. Genetically encoded, functional single-strand RNA origami: anticoagulant. Adv. Mater. 31, e1808262 (2019).

    Article  PubMed  Google Scholar 

  12. Jepsen, M. D. E. et al. Development of a genetically encodable FRET system using fluorescent RNA aptamers. Nat. Commun. 9, 18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chopra, A., Sagredo, S., Grossi, G., Andersen, E. S. & Simmel, F. C. Out-of-plane aptamer functionalization of RNA three-helix tiles. Nanomaterials (Basel) 9, 507 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  14. Porter, E. B., Polaski, J. T., Morck, M. M. & Batey, R. T. Recurrent RNA motifs as scaffolds for genetically encodable small-molecule biosensors. Nat. Chem. Biol. 13, 295–301 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Oi, H. et al. Programmable formation of catalytic RNA triangles and squares by assembling modular RNA enzymes. J. Biochem. 161, 451–462 (2017).

    CAS  PubMed  Google Scholar 

  16. Afonin, K. A. et al. Design and self-assembly of siRNA-functionalized RNA nanoparticles for use in automated nanomedicine. Nat. Protoc. 6, 2022–2034 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cui, D. et al. Regression of gastric cancer by systemic injection of RNA nanoparticles carrying both ligand and siRNA. Sci. Rep. 5, 10726 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Afonin, K. A. et al. Co-transcriptional assembly of chemically modified RNA nanoparticles functionalized with siRNAs. Nano Lett. 12, 5192–5195 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Myhrvold, C. & Silver, P. A. Using synthetic RNAs as scaffolds and regulators. Nat. Struct. Mol. Biol. 22, 8–10 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Delebecque, C. J., Lindner, A. B., Silver, P. A. & Aldaye, F. A. Organization of intracellular reactions with rationally designed RNA assemblies. Science 333, 470–474 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Sachdeva, G., Garg, A., Godding, D., Way, J. C. & Silver, P. A. In vivo co-localization of enzymes on RNA scaffolds increases metabolic production in a geometrically dependent manner. Nucleic Acids Res. 42, 9493–9503 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zalatan, J. G. et al. Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell 160, 339–350 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Delebecque, C. J., Silver, P. A. & Lindner, A. B. Designing and using RNA scaffolds to assemble proteins in vivo. Nat. Protoc. 7, 1797–1807 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Schwarz-Schilling, M. et al. Optimized assembly of a multifunctional RNA-protein nanostructure in a cell-free gene expression system. Nano Lett. 18, 2650–2657 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Rogers, T. A., Andrews, G. E., Jaeger, L. & Grabow, W. W. Fluorescent monitoring of RNA assembly and processing using the split-spinach aptamer. ACS Synth. Biol. 4, 162–166 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Liu, D. et al. Branched kissing loops for the construction of diverse RNA homooligomeric nanostructures. Nat. Chem. 12, 249–259 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Andersen, E. S. Prediction and design of DNA and RNA structures. New Biotechnol. 27, 184–193 (2010).

    Article  CAS  Google Scholar 

  28. Jabbari, H., Aminpour, M. & Montemagno, C. Computational approaches to nucleic acid origami. ACS Comb. Sci. 17, 535–547 (2015).

    Article  CAS  PubMed  Google Scholar 

  29. Bindewald, E., Grunewald, C., Boyle, B., O’Connor, M. & Shapiro, B. A. Computational strategies for the automated design of RNA nanoscale structures from building blocks using NanoTiler. J. Mol. Graph. Model. 27, 299–308 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jossinet, F., Ludwig, T. E. & Westhof, E. Assemble: an interactive graphical tool to analyze and build RNA architectures at the 2D and 3D levels. Bioinformatics 26, 2057–2059 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yesselman, J. D. et al. Computational design of three-dimensional RNA structure and function. Nat. Nanotechnol. 14, 866–873 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xayaphoummine, A., Bucher, T. & Isambert, H. Kinefold web server for RNA/DNA folding path and structure prediction including pseudoknots and knots. Nucleic Acids Res. 33, W605–W610 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhao, P., Zhang, W. & Chen, S. J. Cotranscriptional folding kinetics of ribonucleic acid secondary structures. J. Chem. Phys. 135, 245101 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Churkin, A. et al. Design of RNAs: comparing programs for inverse RNA folding. Brief. Bioinform. 19, 350–358 (2018).

    CAS  PubMed  Google Scholar 

  35. Zadeh, J. N. et al. NUPACK: analysis and design of nucleic acid systems. J. Comput. Chem. 32, 170–173 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Ennifar, E., Walter, P., Ehresmann, B., Ehresmann, C. & Dumas, P. Crystal structures of coaxially stacked kissing complexes of the HIV-1 RNA dimerization initiation site. Nat. Struct. Biol. 8, 1064–1064 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Fiore, J. L. & Nesbitt, D. J. An RNA folding motif: GNRA tetraloop–receptor interactions. Q. Rev. Biophys. 46, 223–264 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Lee, A. J. & Crothers, D. M. The solution structure of an RNA loop–loop complex: the ColE1 inverted loop sequence. Structure 6, 993–1005 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Paige, J. S., Wu, K. Y. & Jaffrey, S. R. RNA mimics of green fluorescent protein. Science 333, 642–646 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dolgosheina, E. V. et al. RNA mango aptamer-fluorophore: a bright, high-affinity complex for RNA labeling and tracking. ACS Chem. Biol. 9, 2412–2420 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Convery, M. A. et al. Crystal structure of an RNA aptamer–protein complex at 2.8-Å resolution. Nat. Struct. Biol. 5, 133–139 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Lim, F. & Peabody, D. S. RNA recognition site of PP7 coat protein. Nucleic Acids Res. 30, 4138–4144 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Geary, C. W. & Andersen, E. S. in DNA Computing and Molecular Programming (eds Murata, S. & Kobayashi, S.) 1–19 (Springer, 2014).

  44. Lorenz, R. et al. ViennaRNA Package 2.0. Algorithms Mol. Biol. 6, 26 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Seeman, N. C. De novo design of sequences for nucleic acid structural engineering. J. Biomol. Struct. Dyn. 8, 573–581 (1990).

    Article  CAS  PubMed  Google Scholar 

  46. Sulc, P., Romano, F., Ouldridge, T. E., Doye, J. P. & Louis, A. A. A nucleotide-level coarse-grained model of RNA. J. Chem. Phys. 140, 235102 (2014).

    Article  PubMed  Google Scholar 

  47. Chworos, A. et al. Building programmable jigsaw puzzles with RNA. Science 306, 2068–2072 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Jaeger, L. & Chworos, A. The architectonics of programmable RNA and DNA nanostructures. Curr. Opin. Struct. Biol. 16, 531–543 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Grainger, R. J., Murchie, A. I. & Lilley, D. M. Exchange between stacking conformers in a four-way DNA junction. Biochemistry 37, 23–32 (1998).

    Article  CAS  PubMed  Google Scholar 

  50. Goedhart, J. et al. Structure-guided evolution of cyan fluorescent proteins towards a quantum yield of 93%. Nat. Commun. 3, 751 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Nguyen, A. W. & Daugherty, P. S. Evolutionary optimization of fluorescent proteins for intracellular FRET. Nat. Biotechnol. 23, 355–360 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Ohashi, T., Galiacy, S. D., Briscoe, G. & Erickson, H. P. An experimental study of GFP-based FRET, with application to intrinsically unstructured proteins. Protein Sci. 16, 1429–1438 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Autour, A., Westhof, E. & Ryckelynck, M. iSpinach: a fluorogenic RNA aptamer optimized for in vitro applications. Nucleic Acids Res. 44, 2491–2500 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Fernandez-Millan, P., Autour, A., Ennifar, E., Westhof, E. & Ryckelynck, M. Crystal structure and fluorescence properties of the iSpinach aptamer in complex with DFHBI. RNA 23, 1788–1795 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jeng, S. S. et al. Fluorogenic aptamers resolve the flexibility of RNA junctions using orientation-dependent FRET. RNA 27, 433–444 (2021).

    Article  PubMed  Google Scholar 

  56. Douglas, S. M. et al. Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459, 414–418 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bayer, T. S., Booth, L. N., Knudsen, S. M. & Ellington, A. D. Arginine-rich motifs present multiple interfaces for specific binding by RNA. RNA 11, 1848–1857 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mohammed, A., Orponen, P. & Pai, S. in Unconventional Computation and Natural Computation (eds Stepney, S. & Verlan, S.) 159–172 (Springer, 2018).

  59. Lucks, J. B. et al. Multiplexed RNA structure characterization with selective 2′-hydroxyl acylation analyzed by primer extension sequencing (SHAPE-Seq). Proc. Natl Acad. Sci. USA 108, 11063–11068 (2011).

    Article  CAS  PubMed  Google Scholar 

  60. Rupert, P. B., Massey, A. P., Sigurdsson, S. T. & Ferre-D’Amare, A. R. Transition state stabilization by a catalytic RNA. Science 298, 1421–1424 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Golomb, M. & Chamberlin, M. Characterization of T7-specific ribonucleic acid polymerase. IV. Resolution of the major in vitro transcripts by gel electrophoresis. J. Biol. Chem. 249, 2858–2863 (1974).

    Article  CAS  PubMed  Google Scholar 

  62. Seeman, N. C. Nucleic-acid junctions and lattices. J. Theor. Biol. 99, 237–247 (1982).

    Article  CAS  PubMed  Google Scholar 

  63. Lyakhov, D. L. et al. Pausing and termination by bacteriophage T7 RNA polymerase. J. Mol. Biol. 280, 201–213 (1998).

    Article  CAS  PubMed  Google Scholar 

  64. Tang, G. et al. EMAN2: an extensible image processing suite for electron microscopy. J. Struct. Biol. 157, 38–46 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Article  CAS  PubMed  Google Scholar 

  66. Rohou, A. & Grigorieff, N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Lim, F. & Peabody, D. S. Mutations that increase the affinity of a translational repressor for RNA. Nucleic Acids Res. 22, 3748–3752 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chao, J. A., Patskovsky, Y., Almo, S. C. & Singer, R. H. Structural basis for the coevolution of a viral RNA-protein complex. Nat. Struct. Mol. Biol. 15, 103–105 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank L. Qian and E. Winfree for use of their atomic force microscopes, G. Tikhomirov for help with AFM and M. Jepsen for help with FRET. We acknowledge the EteRNA community for conducting an experiment that suggested that kissing loop sequences are less constrained than previously assumed. This inspired us to add de novo design of KLs to Revolvr. C.G. acknowledges a fellowship from the Carlsberg Research Foundation. E.K.S.M. acknowledges the Natural Sciences and Engineering Research Council of Canada for his post doctoral fellowship. P.W.K.R. acknowledges funding by NSF grants (CCF-1317694 and CMMI-1636364) and ONR grants (N00014-16-1-2159, N00014-17-1-2610 and N00014-18-1-2649). E.S.A. acknowledges funding by the ERC Consolidator Grant (RNA ORIGAMI—RNA-protein nanostructures for synthetic biology, 683305), which supported the work of C.G., G.G. and E.K.S.M., and the Independent Research Fund Denmark (9040-00425B), which supported the work of E.K.S.M.

Author information

Authors and Affiliations

Authors

Contributions

C.G., P.W.K.R. and E.S.A. conceived the project. C.G., G.G. and E.K.S.M. performed the research. P.W.K.R. and E.S.A. supervised the project. C.G., P.W.K.R. and E.S.A. wrote the manuscript. All authors analysed the data and commented on the manuscript.

Corresponding authors

Correspondence to Paul W. K. Rothemund or Ebbe S. Andersen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Chemistry thanks Kirill Afonin, Hendrik Dietz and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–31, Supplementary Tables 1–9 and Supplementary Note 1.

Supplementary Software

ROAD software package containing Perl scripts, example data, documentation and tutorial.

Supplementary Video 1

Animation of cotranscriptional folding of ZigZag-B-4X made using RNApath and Chimera.

Supplementary Video 2

Animation of cotranscriptional folding of Ribbon-9H made using RNApath and Chimera.

Supplementary Video 3

Animation of cotranscriptional folding of Path1 made using RNApath and Chimera.

Supplementary Video 4

Animation of cotranscriptional folding of Path2 made using RNApath and Chimera.

Supplementary Video 5

Animation of cotranscriptional folding of Barriers_Example1 made using RNApath and Chimera.

Supplementary Video 6

Animation of cotranscriptional folding of Barriers_Example2 made using RNApath and Chimera.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geary, C., Grossi, G., McRae, E.K.S. et al. RNA origami design tools enable cotranscriptional folding of kilobase-sized nanoscaffolds. Nat. Chem. 13, 549–558 (2021). https://doi.org/10.1038/s41557-021-00679-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-021-00679-1

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research